期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Flow structure and rock-breaking feature of the self-rotating nozzle for radial jet drilling 被引量:3
1
作者 Hua-Lin Liao Xia Jia +3 位作者 ji-lei niu Yu-Cai Shi Hong-Chen Gu Jun-Fu Xu 《Petroleum Science》 SCIE CAS CSCD 2020年第1期211-221,共11页
For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking feat... For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry. 展开更多
关键词 Self-rotating NOZZLE Flow field characteristic Numerical simulation Rock-breaking
下载PDF
Erosion characteristics and mechanism of the self-resonating cavitating jet impacting aluminum specimens under the confining pressure conditions 被引量:4
2
作者 Hua-lin Liao Sheng-li Zhao +4 位作者 Yan-feng Cao Lei Zhang Can Yi ji-lei niu Li-hong Zhu 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第2期375-384,共10页
In order to study the effects of the confining pressure on the erosion characteristics of the self-resonating cavitating jet under wellbore and deep-water conditions,experiments are conducted on aluminum specimens imp... In order to study the effects of the confining pressure on the erosion characteristics of the self-resonating cavitating jet under wellbore and deep-water conditions,experiments are conducted on aluminum specimens impinged by the organ pipe cavitation nozzle and the conical nozzle with the confining pressure in the range 0 MPa–10.0 MPa.Meanwhile,through the numerical simulation of the collapsing process of the cavitation bubble and the noise test,the cavitation erosion mechanism is analyzed.The experimental results show that the optimal standoff distance and the confining pressure can be obtained for the maximum erosion quantities,and the optimal standoff distance is 5 to 7 times greater than the equivalent nozzle outlet diameter and the confining pressure is about 2.0 MPa.Under the same conditions,the erosion caused by the cavitation nozzle is up to 2 times larger than that caused by the conical nozzle.According to the numerical simulation and the noise test,the cavitation erosion on the aluminum specimens is mostly caused by mechanical forces due to the high-frequency pressure pulse generated during the collapse of cavitation bubbles,while just a small part is caused by micro-jets. 展开更多
关键词 Cavitating jet cavitation erosion confining pressure NOZZLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部