We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experi...We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments(PEnELOPE)facilities.This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality.Its implementation at PHELIX allowed one to bypass the front-end amplifier,which is known to be a source of pre-pulses.With the bypass,an amplified spontaneous emission contrast of 4.9×10^(−13)and a pre-pulse contrast of 6.2×10^(−11)could be realized.Due to its high stability,high beam quality and its versatile pump amplifier,the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.展开更多
基金funding through the ATHENA project of the Helmholtz Association and through the Loewe program of the state of Hessefunded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200–EUROfusion)the European Union’s Horizon 2020 research and innovation program under grant agreement No. 871124 Laserlab-Europe
文摘We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments(PEnELOPE)facilities.This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality.Its implementation at PHELIX allowed one to bypass the front-end amplifier,which is known to be a source of pre-pulses.With the bypass,an amplified spontaneous emission contrast of 4.9×10^(−13)and a pre-pulse contrast of 6.2×10^(−11)could be realized.Due to its high stability,high beam quality and its versatile pump amplifier,the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.