Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequen...Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequently, e cient removal of VOSiC from biogas that is used as a biofuel is required. In this work, acetylated silica gel(Ac@SG) was synthesized,via treatment of microporous silica gel(SG) with acetic anhydride as an adsorbent, for removal of VOSiC from biogas,and characterized with XRD, SEM–EDS, N2-BET and FT-IR. This Ac@SG adsorbent exhibited a meso-/microporous structure and hydrophobic surface, indicating it was a more e cient adsorbent for removing hexamethyldisiloxane(L2) and octamethylcyclotetrasiloxane(D4) from biogas samples than conventional SG. It was found that the adsorption capacities of Ac@SG reached 304 mg L2/g for hexamethyldisiloxane and 916 mg D4/g for octamethylcyclotetrasiloxane at lower temperatures in the experimental range, and water had no significant e ect on its absorption e ciency. The used Ac@SG could be easily regenerated by heating it at 110 °C, and the adsorption capacity of recycled Ac@SG for hexamethyldisiloxane and octamethylcyclotetrasiloxane was kept constant in four recycle adsorption experiments.展开更多
基金financial support from the National Natural Science Foundation of China (21677046)the Natural Science Foundation of Hebei Province (B2017205146)
文摘Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequently, e cient removal of VOSiC from biogas that is used as a biofuel is required. In this work, acetylated silica gel(Ac@SG) was synthesized,via treatment of microporous silica gel(SG) with acetic anhydride as an adsorbent, for removal of VOSiC from biogas,and characterized with XRD, SEM–EDS, N2-BET and FT-IR. This Ac@SG adsorbent exhibited a meso-/microporous structure and hydrophobic surface, indicating it was a more e cient adsorbent for removing hexamethyldisiloxane(L2) and octamethylcyclotetrasiloxane(D4) from biogas samples than conventional SG. It was found that the adsorption capacities of Ac@SG reached 304 mg L2/g for hexamethyldisiloxane and 916 mg D4/g for octamethylcyclotetrasiloxane at lower temperatures in the experimental range, and water had no significant e ect on its absorption e ciency. The used Ac@SG could be easily regenerated by heating it at 110 °C, and the adsorption capacity of recycled Ac@SG for hexamethyldisiloxane and octamethylcyclotetrasiloxane was kept constant in four recycle adsorption experiments.