Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some inter...Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.展开更多
In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty...In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.展开更多
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming proble...In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.展开更多
基金Supported by the National Natural Science Foundation of China(No.10871144)the Natural Science Foundation of Tianjin(No.07JCYBJC05200)
文摘Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.
基金Supported by the National Natural Science Foundation of China(No.10671010,10871144 and 10671145)
文摘In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.
基金Supported by the National Natural Science Foundation of China(No.11171348,11171252 and 71232011)
文摘In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.