期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation into Hydrogen Diffusion and Susceptibility of Hydrogen Embrittlement of High Strength 0Cr16Ni5Mo Steel 被引量:1
1
作者 Yong-wei SUN ji-zhi chen Jun LIU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第10期961-968,共8页
High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hy... High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hydrogen permeation, thermal desorption spectroscopy (TDS), slow strain rate test (SSRT) and microstructure observation. The hydrogen concentration of both 10.9 grade (Rm=950-1 150 MPa) and 12.9 grade (Rm=1 150-1 250 MPa) bolt steels increases with increasing the hydrogen charging current densities and charging time. The 12.9 grade bolt steel has higher apparent diffusion coefficient than 10.9 grade steel, corresponding to the value of 4.7×10 7 mm^2/s. By means of TDS tests, the activation energies of the two experimental steels are 17.74 kJ/mol and 18.92 kJ/mol, respectively. The hydrogen traps of both grade bolt steels are dislocations and crystal lattice. The notch tensile strength of the steels is reduced with the hydrogen concentration carried out by SSRT. The fracture morphologies of the steels after hydrogen charging present ductile dimple and quasi-cleavage characteristic. 展开更多
关键词 0Cr16Ni5Mo steel hydrogen diffusion hydrogen permeation thermal desorption spectroscopy slow strain rate test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部