期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The 600 keV electron injections in the Earth's outer radiation belt:A statistical study 被引量:2
1
作者 ChaoLing Tang Xu Wang +2 位作者 BinBin Ni ZhengPeng Su jichun zhang 《Earth and Planetary Physics》 EI CSCD 2022年第2期149-160,共12页
Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron... Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron injections in the outer radiation belt by using data from the Van Allen Probes. On the basis of the characteristics of different injections, 600 keV electron injections in the outer radiation belt were divided into pulsed electron injections and nonpulsed electron injections. The 600 keV electron injections were observed at 4.5 < L <6.4 under the geomagnetic conditions of 450 nT < AE < 1,450 nT. An L of ~4.5 is an inward limit for 600 keV electron injections. Before the electron injections, a flux negative L shell gradient for ≤0.6 MeV electrons or low electron fluxes in the injected region were observed. For600 keV electron injections at different L shells, the source populations from the Earth’s plasma sheet were different. For 600 keV electron injections at higher L shells, the source populations were higher energy electrons(~200 keV at X ~–9 R_(E)), whereas the source populations for 600 keV electron injections at lower L shells were lower energy electrons(~80 keV at X ~–9 R_(E)). These results are important to further our understanding of electron injections and rapid enhancements of 600 keV electrons in the Earth’s outer radiation belt. 展开更多
关键词 electron injections relativistic electrons the Earth’s outer radiation belt plasma sheet Van Allen Probes
下载PDF
Longitudinal connection effect on initial support steel frames in tunnels--Take the traffic tunnels as examples 被引量:2
2
作者 Kaimeng Ma jichun zhang +2 位作者 Junru zhang Zhiyong Wang Jimeng Feng 《Underground Space》 SCIE EI 2022年第4期608-622,共15页
Most tunnel projects are designed with cross-sectional loads,and the inhomogeneity of the longitudinal forces is ignored.In theory,such a support structure can resist large loads,but in practice,large deformation,conc... Most tunnel projects are designed with cross-sectional loads,and the inhomogeneity of the longitudinal forces is ignored.In theory,such a support structure can resist large loads,but in practice,large deformation,concrete cracking,steel frame distortion,and other phenomena often occur in tunnels under poor surrounding rock conditions.Hence,the longitudinal stability of the tunnel must be considered.In this study,the mechanism of longitudinal connecting ribs(LCRs)of tunnels was investigated through element tests,theoretical analyses,and numerical simulations,and the effect of the LCRs was evaluated experimentally.The applicability of the constitutive relations and boundary conditions of the numerical model was verified.The instability mode of the steel frame reflecting the longitudinal stress gradient of the tunnel was analyzed,and the longitudinal surrounding rock pressure and the verified numerical model were applied to analyze the LCR using the load structure method.The results indicate the following:(1)LCRs can effectively improve the ultimate bearing capacity and stability of a structure and reduce the area and degree of damage;(2)Two types of instability modes occur in tunnel steel frames,and the main factor is bending failure caused by the axial force;(3)The distance sensitivity of the LCR in the tunnel is higher than the stiffness sensitivity.For large deformations of tunnels,double rows of rebars with a spacing of less than 1.5 m should be used as longitudinal connections. 展开更多
关键词 TUNNEL Longitudinal connecting ribs Load structure method Optimization design EXPERIMENT
原文传递
On the superplastic deformation mechanisms of near-αTNW700 titanium alloy
3
作者 Lixia Ma Min Wan +3 位作者 Weidong Li Jie Shao Xiaoning Han jichun zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期173-185,共13页
The new near-αTNW700 titanium alloy is a potential candidate material for high performance ultrasonic/hypersonic aircrafts,which is designed for short-term service at 700℃.This study systematically investigated the ... The new near-αTNW700 titanium alloy is a potential candidate material for high performance ultrasonic/hypersonic aircrafts,which is designed for short-term service at 700℃.This study systematically investigated the superplastic deformation microstructure evolution and mechanism of TNW700 alloy at different strain rates and true strains at 925℃.Results show that TNW700 alloy exhibits excellent superplastic behavior in a constant strain rate range of 0.0005-0.005 s^(-1) with elongation above 400%.The peak stress decreases with decreasing strain rate,which is related to the increase ofβ-phase volume fraction caused by the increase of thermal exposure time.In addition,significant strain hardening is observed in early-middle stage of superplastic deformation,and flow softening is followed in middle-late stage.To rationalize these complex flow behaviors,electron backscatter diffraction(EBSD)and high resolution transmission electron microscopy(HRTEM)were used to characterize the microstructure.Strain hardening is correlated to the synergistic effect ofβgrain growth,dislocation accumulation,silicide precipitate,and solid solution strengthening ofαphase.Continuous dynamic recrystallization(CDRX)induced the fragmentation of primaryαgrains in middle-late stage of superplastic deformation,and the refinement ofαgrains,the increase ofβphase volume fraction and dynamic dislocation recovery are main causes of high strain softening.In addition,EBSD and TEM observations confirmed texture randomization,fine equiaxed primaryαgrains and intragranular dislocation movement,indicating that grain boundary sliding(GBS)accommodated by dislocation sliding/climb is the dominant superplastic deformation mechanism of TNW700 alloy. 展开更多
关键词 Near-αtitanium alloy Superplastic deformation Strain hardening and flow softening Microstructure evolution Deformation mechanisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部