In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition ...In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition RElationship (CU-SVD-RE) are proposed. The algorithm DC-RE gets the feature vector from the relationship of DC coefficients between adjacent blocks, CU-SVD gets the feature vector from the singular value of third-order cumulants, while CU-SVD-RE combines the essence of the first two algorithms. Specially, CU-SVD-RE gets the feature vector from the relationship between singular values of third-order cumulants. Being a cross-over studying field of watermarking and cryptography, the zero-watermark algorithms are robust without modifying the carrier. Numerical simulation obviously shows that, under geometric attacks, the performance of CU-SVD-RE and DC-RE algorithm are better and all three proposed algorithms are robust to various attacks, such as median filter, salt and pepper noise, and Gaussian low-pass filter attacks.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60672095, 60972165, and 61071111)the National High Technology Project of China (No. 2007AA-11Z210)+2 种基金the Doctoral Fund of Ministry of Education of China (No. 20100092120012 and 20070286004)the Foundation of High Technology Project in Jiangsu Provincethe Natural Science Foundation of Jiangsu Province (No.BK2010240)
文摘In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition RElationship (CU-SVD-RE) are proposed. The algorithm DC-RE gets the feature vector from the relationship of DC coefficients between adjacent blocks, CU-SVD gets the feature vector from the singular value of third-order cumulants, while CU-SVD-RE combines the essence of the first two algorithms. Specially, CU-SVD-RE gets the feature vector from the relationship between singular values of third-order cumulants. Being a cross-over studying field of watermarking and cryptography, the zero-watermark algorithms are robust without modifying the carrier. Numerical simulation obviously shows that, under geometric attacks, the performance of CU-SVD-RE and DC-RE algorithm are better and all three proposed algorithms are robust to various attacks, such as median filter, salt and pepper noise, and Gaussian low-pass filter attacks.