Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = ...Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = {0}, then f is a polynomial mapping. In this paper, we provide an upper bound for the degree of such a polynomial mapping using the multiplicity of f .展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11801572,11688101)。
文摘Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = {0}, then f is a polynomial mapping. In this paper, we provide an upper bound for the degree of such a polynomial mapping using the multiplicity of f .