期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integration Operators on Spaces of Dirichlet Series
1
作者 jia le chen Mao Fa WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第10期1919-1938,共20页
We first study the Volterra operator V acting on spaces of Dirichlet series.We prove that V is bounded on the Hardy space H_(0)^(p)for any 0<p≤∞,and is compact on H_(0)^(p)for 1<p≤∞.Furthermore,we show that ... We first study the Volterra operator V acting on spaces of Dirichlet series.We prove that V is bounded on the Hardy space H_(0)^(p)for any 0<p≤∞,and is compact on H_(0)^(p)for 1<p≤∞.Furthermore,we show that V is cyclic but not supercyclic on H_(0)^(p)for any 0<p<∞.Corresponding results are also given for V acting on Bergman spaces H_(w,0)^(p).We then study the Volterra type integration operators T_(g).We prove that if T_(g)is bounded on the Hardy space H_(p),then it is bounded on the Bergman space H_(w)^(p). 展开更多
关键词 Integration operator Dirichlet series Hardy space Bergman space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部