Few-layer Ti3C2Tx MXene is synthesized from multi-layered Ti3C2Tx via a flash freezing-assisted delamination process.During the flash freezing process,the water molecules in the interlayers of multi-layered MXene are ...Few-layer Ti3C2Tx MXene is synthesized from multi-layered Ti3C2Tx via a flash freezing-assisted delamination process.During the flash freezing process,the water molecules in the interlayers of multi-layered MXene are induced to rearrange and produce volume expansion,thus notably expand the MXenes’interlayer distance to form few-layer MXene.The synthesized few-layer Ti3C2Tx MXene nanosheets display a very small thickness(less than 5 Ti3C2 atom-layers)and expanded interlayer spacing.Consequently,the few-layer Ti3C2Tx exhibits enhanced capacitance(255 F g^-1 vs.177 F g^-1 for the multi-layered Ti3C2Tx)and significantly optimized rate capability(150 F g^-1 at 200 mV s^-1 vs.25 F g^-1 for the multi-layered Ti3C2Tx),because redox-active sites in the few-layer MXene are easily accessible to electrolyte ions.Moreover,an asymmetric supercapacitor is constructed using the few-layer Ti3C2Tx negative electrode and an activated carbon fiber positive electrode.The asymmetric supercapacitor presents a high energy density of 17.9 Wh kg^-1 and a high power density of 14 kW kg^-1,which is inseparable from its wide voltage window of 1.4 V and the good rate performance of the few-layer Ti3C2Tx MXene electrode.Overall,the flash freezing-assist delamination provides an effective and environmental-friendly strategy to synthesize few-layer MXene materials for high-rate electrochemical energy storage.展开更多
基金financial supports from Shenzhen Technical Plan Project(No.JCYJ20160301154114273No.JCYJ20170412171430026)+2 种基金International Science and Technology Cooperation Program of China(No.2016YFE0102200)National Key Basic Research(973)Program of China(No.2014CB932400)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)。
文摘Few-layer Ti3C2Tx MXene is synthesized from multi-layered Ti3C2Tx via a flash freezing-assisted delamination process.During the flash freezing process,the water molecules in the interlayers of multi-layered MXene are induced to rearrange and produce volume expansion,thus notably expand the MXenes’interlayer distance to form few-layer MXene.The synthesized few-layer Ti3C2Tx MXene nanosheets display a very small thickness(less than 5 Ti3C2 atom-layers)and expanded interlayer spacing.Consequently,the few-layer Ti3C2Tx exhibits enhanced capacitance(255 F g^-1 vs.177 F g^-1 for the multi-layered Ti3C2Tx)and significantly optimized rate capability(150 F g^-1 at 200 mV s^-1 vs.25 F g^-1 for the multi-layered Ti3C2Tx),because redox-active sites in the few-layer MXene are easily accessible to electrolyte ions.Moreover,an asymmetric supercapacitor is constructed using the few-layer Ti3C2Tx negative electrode and an activated carbon fiber positive electrode.The asymmetric supercapacitor presents a high energy density of 17.9 Wh kg^-1 and a high power density of 14 kW kg^-1,which is inseparable from its wide voltage window of 1.4 V and the good rate performance of the few-layer Ti3C2Tx MXene electrode.Overall,the flash freezing-assist delamination provides an effective and environmental-friendly strategy to synthesize few-layer MXene materials for high-rate electrochemical energy storage.