AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory ...AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874161 and 11474105)the Science and Technology Program of Guangdong Province,China(Grant Nos.2017B010127001 and 2015B010105011)+4 种基金the Education Department Project of Guangdong Province,China(Grant No.2017KZDXM022)the Science and Technology Project of Guangzhou City,China(Grant No.201607010246)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)the Science and Technology Project of Shenzhen City,China(Grant No.GJHZ20180416164721073)the Science and Technology Planning of Guangdong Province,China(Grant No.2015B010112002)
文摘AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.