We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformati...We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671255 and 11701510)the Ministry of Economy and Competitiveness of Spain(Grant No.MTM2016-80276-P(AEI/FEDER,EU))the China Postdoctoral Science Foundation(Grant No.2017M621964)
文摘We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.