期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean 被引量:4
1
作者 Wei Wei Long Lu +11 位作者 Xiao-Hua Bian Qing-Tian Li jia-qi han Jian-Jun Tao Cui-Cui Yin Yong-Cai Lai Wei Li Ying-Dong Bi Wei-Qun Man Shou-Yi Chen Jin-Song Zhang Wan-Ke Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第7期1636-1650,共15页
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses.A previous study found that the tandem CCCH zincfinger protei... Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses.A previous study found that the tandem CCCH zincfinger protein Gm ZF351 is an oil level regulator. In this study, we discovered that the Gm ZF351 gene is induced by stress and that the overexpression of Gm ZF351 confers stress tolerance to transgenic soybean. Gm ZF351 directly regulates the expression of Gm CIPK9 and Gm SnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements.Stress induction of Gm ZF351 is mediated through reduction in the H3K27me3 level at the Gm ZF351locus.TwoJMJ30-demethylase-likegenes,Gm JMJ30-1 and Gm JMJ30-2, are involved in this demethylationprocess.Overexpressionof Gm JMJ30-1/2 in transgenic hairy roots enhances Gm ZF351 expression mediated by histone demethylation and confers stress tolerance to soybean.Yield-related agronomic traits were evaluated in stable Gm ZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of Gm JMJ30-Gm ZF351 action in stress tolerance, in addition to that of Gm ZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments. 展开更多
关键词 abiotic stress histone demethylation JMJ30 SOYBEAN TZF protein
原文传递
Plasma spray-physical vapor deposition toward advanced thermal barrier coatings:a review 被引量:11
2
作者 Mei-Jun Liu Gao Zhang +5 位作者 Yan-Hong Lu jia-qi han Guang-Rong Li Cheng-Xin Li Chang-Jiu Li Guan-Jun Yang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期479-497,共19页
Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap betw... Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap between conventional thermal spray and vapor deposition and provides a variety of coating microstructures composed of vapor,liquid,and solid deposition units.The PS–PVD technique serves a broad range of applications in the fields of thermal barrier coatings(TBCs),environmental barrier coatings(EBCs),oxygen permeable films,and electrode films.It also represents the development direction of high-performance TBC/EBC preparation technologies.With the PS–PVD technique,the composition of the deposition unit determines the microstructure of the coating and its performance.When coating materials are injected into a nozzle and transported into the plasma jet,the deposition unit generated by a coating material is affected by the plasma jet characteristics.However,there is no direct in situ measurement method of material transfer and deposition processes in the PS–PVD plasma jet,because of the extreme conditions of PS–PVD such as a low operating pressure of*100 Pa,temperatures of thousands of degrees,and a thin and high-velocity jet.Despite the difficulties,the transport and transformation behaviors of the deposition units were also researched by optical emission spectroscopy,observation of the coating microstructure and other methods.This paper reviews the progress of PS–PVD technologies considering the preparation of advanced thermal barrier coatings from the perspective of the transport and transformation behaviors of the deposition units.The development prospects of new high-performance TBCs using the PS–PVD technique are also discussed. 展开更多
关键词 Plasma spray–physical vapor deposition (PSPVD) Deposition unit Cross-domain behavior Deposition mechanism Thermal barrier coatings (TBCs)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部