In this study, the influence of azo dye of methyl red (MR) on COD, dye and phosphorus removal and the transformation of polyhydroxyalkanoate (PHA) and glycogen of phosphate accumulating organisms in enhanced biologica...In this study, the influence of azo dye of methyl red (MR) on COD, dye and phosphorus removal and the transformation of polyhydroxyalkanoate (PHA) and glycogen of phosphate accumulating organisms in enhanced biological phosphorus removal (EBPR) system were investigated. The results indicated COD and dye removal efficiencies were decreased from 97.9% to 72.8% and 99.7% to 82.0%, respectively, when MR concentration was increased from 0 to 40 mg/L. Low MR concentration (5 mg/L) had no influence on P removal and transformation of PHA and glycogen. However, P removal, PHA production and consumption, and glycogen replenishment were seriously inhibited at high MR concentration, while glycogen hydrolysis was simulated at MR concentration of 20 and 40 mg/L. The transformations of PHA and glycogen at aerobic condition were more sensitive to those at anaerobic condition at high MR concentration. These results demonstrated dye and its intermediate products would inhibit the metabolism of polyphosphate accumulating organisms, which should be taken into account in future work.展开更多
文摘In this study, the influence of azo dye of methyl red (MR) on COD, dye and phosphorus removal and the transformation of polyhydroxyalkanoate (PHA) and glycogen of phosphate accumulating organisms in enhanced biological phosphorus removal (EBPR) system were investigated. The results indicated COD and dye removal efficiencies were decreased from 97.9% to 72.8% and 99.7% to 82.0%, respectively, when MR concentration was increased from 0 to 40 mg/L. Low MR concentration (5 mg/L) had no influence on P removal and transformation of PHA and glycogen. However, P removal, PHA production and consumption, and glycogen replenishment were seriously inhibited at high MR concentration, while glycogen hydrolysis was simulated at MR concentration of 20 and 40 mg/L. The transformations of PHA and glycogen at aerobic condition were more sensitive to those at anaerobic condition at high MR concentration. These results demonstrated dye and its intermediate products would inhibit the metabolism of polyphosphate accumulating organisms, which should be taken into account in future work.