The protein–protein interaction between menin and mixed lineage leukemia(MLL)plays an important role in the development of human hepatocellular carcinogenesis(HCC)and is associated with poor prognosis of HCC patients...The protein–protein interaction between menin and mixed lineage leukemia(MLL)plays an important role in the development of human hepatocellular carcinogenesis(HCC)and is associated with poor prognosis of HCC patients.1,2 Hence,interrupting the menin-MLL interaction is an attractive strategy in cancer treatment,particularly for liver cancer.3,4 In this study,we identified complex C1 as the first rhodium(III)-based orally bioavailable selective inhibitor of the menin-MLL interaction for HCC.展开更多
Poly(propylene carbonate phthalate)(PPC-P)is a chemically modified poly(propylene carbonate)(PPC)biodegradable thermoplastic by introducing phthalic anhydride(PA)as the third monomer into the copolymerization of propy...Poly(propylene carbonate phthalate)(PPC-P)is a chemically modified poly(propylene carbonate)(PPC)biodegradable thermoplastic by introducing phthalic anhydride(PA)as the third monomer into the copolymerization of propylene oxide(PO)and CO_(2).To enhance the thermal and mechanical properties of PPC-P,a branching agent pyromellitic anhydride(PMDA)was introduced into the terpolymerization of PO,PA and CO_(2).The resulting copolymers with branched structure,named branched PPC-P,can be obtained using metal-free Lewis pair consisting of triethyl borane(TEB)and bis(triphenylphosphine)iminium chloride(PPNCl)as catalyst.The products obtained were analyzed by NMR spectroscopy and their thermal,mechanical properties and melt processability were evaluated by DSC,TGA,tensile test and melt flow index(MFI)measurement.The obtained branched PPC-P has a high molecular weight up to 156.0 kg·mol^(-1).It shows an increased glass transition temperature(Tg)higher than 50℃and an enhanced tensile strength as high as 38.9 MPa.Noteworthily,the MFI value decreases obviously,indicative of an improved melt strength arising from the branched structure and high molecular weight.What is more,the branched PPC-P exhibits reasonable biodegradability,which demonstrates the great potential as a new green thermoplastic for the family of biodegradable plastics.展开更多
When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling e...When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling excessive settlement and protecting surrounding buildings.This paper presents a case study of twin tunnels undercrossing a river in soft soil in Hangzhou,China.The soft soil of Hangzhou refers to cohesive soil in a soft plastic or fluid plastic state with high natural water content,high compressibility,low bearing capacity,and low shear strength.Considering the influence of the river,the research region was divided into two parts,inside and outside the river-affected area,based on monitoring data of the Zizhi Tunnel.The development law of surface settlement is divided into three stages.In the first and second stages,the surface settlement within and outside the river-affected area showed a similar trend:the settlement increased and the growth rate of settlement in the second stage was smaller within the river-affected area.In the third stage,the surface settlement continued to increase within the river-affected area,while it converged outside the river-affected area.Within the river-affected area,there was an asynchronization of the sinking rate and stability of vault settlements and surface settlements.A numerical model was established by simulating different reinforcements of the tunnel.The numerical model revealed that the ground movement is influenced by the distribution and amount of the excess pore water pressure.The excess pore pressure was concentrated mostly in the range of 1.0H_(t)-3.0H_(t)(H_(t) is the tunnel height)before the tunnel face,especially within the river-affected area.Inside the river-affected area,the dissipation of excess pore water pressure needs more time,leading to slow stabilization of surface settlement.When undercrossing a river,a cofferdam is necessary to reduce excessive ground deformation by dispersing the distribution of excess pore water pressure.展开更多
Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,...Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.展开更多
In this study,we propose a drainage pipe pile under vacuum consolidation to integrate foundation treatment and pile foundation engineering in soft soil areas.To study its bearing capacity characteristics and foundatio...In this study,we propose a drainage pipe pile under vacuum consolidation to integrate foundation treatment and pile foundation engineering in soft soil areas.To study its bearing capacity characteristics and foundation treatment performance,single pile static load tests,vane shear tests,and water content tests were carried out for ordinary piles,perforated piles,and drainage pipe piles under conditions of static and vacuum consolidation.Based on the results,the concept of strong and weak reinforcement areas was proposed and used for bearing capacity prediction.The results showed that the drainage pipe pile did not become silted under vacuum consolidation.The single pile bearing capacity was much higher than that of an ordinary pile,and the pile side friction was exerted mainly in the middle and lower parts.Good results were achieved using the shear strength at the junction of the strong and weak reinforcement areas to estimate the ultimate bearing capacity of a single pile.This study provided important insights into the design and construction of drainage pipe piles in a soft soil foundation.展开更多
A series of semi-aromatic polyesters named as Poly(PO-CHO-PA) were facilely synthesized via ring-opening terpolymerization of biobased cyclohexane oxide(CHO)/propylene oxide(PO)/phthalic anhydride(PA) using economical...A series of semi-aromatic polyesters named as Poly(PO-CHO-PA) were facilely synthesized via ring-opening terpolymerization of biobased cyclohexane oxide(CHO)/propylene oxide(PO)/phthalic anhydride(PA) using economical U1/PPNCl as dual catalyst. The proportion of CHO-PA and PO-PA segments in polymer can be readily altered by changing the feed ratio of CHO/PO because the reactivity ratios of CHO and PO with PA calculated by Fineman-Ross method are comparable. All synthesized amorphous polyesters with various compositions show one Tg ranging from 62 ℃ to 133 ℃. Significantly, the mechanical, thermal and barrier properties of these amorphous semi-aromatic polyesters are also adjustable and investigated for the first time. The results indicate the semi-polyesters exhibit superior thermostability(T5% ranging from 306 ℃ to323 ℃) and high tensile strength(40.21-55.7 MPa) that is comparable with polystyrene(PS). Furthermore, Poly(PO-CHO-PA) films possess a promising prospect as packaging materials because of its colorless and highly transparent nature, along with low oxygen and water vapor transmission rate. All above performances may guarantee its potential alternative to commercial PS.展开更多
基金supported by the Science and Technology Development Fund(Macao SAR,China)(No.0007/2020/A1,0020/2022/A1)the State Key Laboratory of Quality Research in Chinese Medicine(University of Macao)(SKL-QRCM(UM)-2020-2022)+9 种基金the University of Macao(China)(MYRG2019-00002-ICMS,MYRG2020-00017-ICMS)2022 Internal Research Grant of SKL-QRCM(University of Macao)(QRCM-IRG2022-011)the National Natural Science Foundation of China,China(No.22077109,21775131)the HKBU SKLEBA Research Grant(SKLP_2223_P03)the National Natural Science Foundation of China(No.82204482)the Guangdong Basic and Applied Basic Research Foundation(China)(No.2021A1515012520)Young Elite Scientists Sponsorship Program by CACM(China)(No.2021-QNRC2-B22)Guangzhou Basic and Applied Basic Research Foundation(China)(No.202102020203)the Fundamental Research Funds for the Central Universities(China)(No.11620355)A part of the research is supported by a trust fund for Yung-Chi Cheng's lab at Yale University.
文摘The protein–protein interaction between menin and mixed lineage leukemia(MLL)plays an important role in the development of human hepatocellular carcinogenesis(HCC)and is associated with poor prognosis of HCC patients.1,2 Hence,interrupting the menin-MLL interaction is an attractive strategy in cancer treatment,particularly for liver cancer.3,4 In this study,we identified complex C1 as the first rhodium(III)-based orally bioavailable selective inhibitor of the menin-MLL interaction for HCC.
基金financially supported by the National Natural Science Foundation of China(No.51673131)the Fundamental Research Funds for the Central Universities(No.171gjc37)。
文摘Poly(propylene carbonate phthalate)(PPC-P)is a chemically modified poly(propylene carbonate)(PPC)biodegradable thermoplastic by introducing phthalic anhydride(PA)as the third monomer into the copolymerization of propylene oxide(PO)and CO_(2).To enhance the thermal and mechanical properties of PPC-P,a branching agent pyromellitic anhydride(PMDA)was introduced into the terpolymerization of PO,PA and CO_(2).The resulting copolymers with branched structure,named branched PPC-P,can be obtained using metal-free Lewis pair consisting of triethyl borane(TEB)and bis(triphenylphosphine)iminium chloride(PPNCl)as catalyst.The products obtained were analyzed by NMR spectroscopy and their thermal,mechanical properties and melt processability were evaluated by DSC,TGA,tensile test and melt flow index(MFI)measurement.The obtained branched PPC-P has a high molecular weight up to 156.0 kg·mol^(-1).It shows an increased glass transition temperature(Tg)higher than 50℃and an enhanced tensile strength as high as 38.9 MPa.Noteworthily,the MFI value decreases obviously,indicative of an improved melt strength arising from the branched structure and high molecular weight.What is more,the branched PPC-P exhibits reasonable biodegradability,which demonstrates the great potential as a new green thermoplastic for the family of biodegradable plastics.
基金This work is supported by the Key Water Science and Technology Project of Zhejiang Province(No.RB2027)the Zhejiang Province Public Welfare Technology Application Research Project(No.LGG22E080002),China.
文摘When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling excessive settlement and protecting surrounding buildings.This paper presents a case study of twin tunnels undercrossing a river in soft soil in Hangzhou,China.The soft soil of Hangzhou refers to cohesive soil in a soft plastic or fluid plastic state with high natural water content,high compressibility,low bearing capacity,and low shear strength.Considering the influence of the river,the research region was divided into two parts,inside and outside the river-affected area,based on monitoring data of the Zizhi Tunnel.The development law of surface settlement is divided into three stages.In the first and second stages,the surface settlement within and outside the river-affected area showed a similar trend:the settlement increased and the growth rate of settlement in the second stage was smaller within the river-affected area.In the third stage,the surface settlement continued to increase within the river-affected area,while it converged outside the river-affected area.Within the river-affected area,there was an asynchronization of the sinking rate and stability of vault settlements and surface settlements.A numerical model was established by simulating different reinforcements of the tunnel.The numerical model revealed that the ground movement is influenced by the distribution and amount of the excess pore water pressure.The excess pore pressure was concentrated mostly in the range of 1.0H_(t)-3.0H_(t)(H_(t) is the tunnel height)before the tunnel face,especially within the river-affected area.Inside the river-affected area,the dissipation of excess pore water pressure needs more time,leading to slow stabilization of surface settlement.When undercrossing a river,a cofferdam is necessary to reduce excessive ground deformation by dispersing the distribution of excess pore water pressure.
基金supported by the National Natural Science Foundation of China under Grant No.51671030.
文摘Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.
基金supported by the Key Water Science and Technology Project of Zhejiang Province(No.RB2027)the Zhejiang Provincial Public Welfare Technology Application Research Project(No.LGG22E080002),China。
文摘In this study,we propose a drainage pipe pile under vacuum consolidation to integrate foundation treatment and pile foundation engineering in soft soil areas.To study its bearing capacity characteristics and foundation treatment performance,single pile static load tests,vane shear tests,and water content tests were carried out for ordinary piles,perforated piles,and drainage pipe piles under conditions of static and vacuum consolidation.Based on the results,the concept of strong and weak reinforcement areas was proposed and used for bearing capacity prediction.The results showed that the drainage pipe pile did not become silted under vacuum consolidation.The single pile bearing capacity was much higher than that of an ordinary pile,and the pile side friction was exerted mainly in the middle and lower parts.Good results were achieved using the shear strength at the junction of the strong and weak reinforcement areas to estimate the ultimate bearing capacity of a single pile.This study provided important insights into the design and construction of drainage pipe piles in a soft soil foundation.
基金financially supported by the National Natural Science Foundation of China (No. 51673131)the Fundamental Research Funds for the Central Universities (No.171gjc37)。
文摘A series of semi-aromatic polyesters named as Poly(PO-CHO-PA) were facilely synthesized via ring-opening terpolymerization of biobased cyclohexane oxide(CHO)/propylene oxide(PO)/phthalic anhydride(PA) using economical U1/PPNCl as dual catalyst. The proportion of CHO-PA and PO-PA segments in polymer can be readily altered by changing the feed ratio of CHO/PO because the reactivity ratios of CHO and PO with PA calculated by Fineman-Ross method are comparable. All synthesized amorphous polyesters with various compositions show one Tg ranging from 62 ℃ to 133 ℃. Significantly, the mechanical, thermal and barrier properties of these amorphous semi-aromatic polyesters are also adjustable and investigated for the first time. The results indicate the semi-polyesters exhibit superior thermostability(T5% ranging from 306 ℃ to323 ℃) and high tensile strength(40.21-55.7 MPa) that is comparable with polystyrene(PS). Furthermore, Poly(PO-CHO-PA) films possess a promising prospect as packaging materials because of its colorless and highly transparent nature, along with low oxygen and water vapor transmission rate. All above performances may guarantee its potential alternative to commercial PS.