The development of catalytic asymmetric methods that enable access to value-added functionalities or structures,exemplified by allylic alcohols,is a highly interesting yet challenging topic from both academic and indu...The development of catalytic asymmetric methods that enable access to value-added functionalities or structures,exemplified by allylic alcohols,is a highly interesting yet challenging topic from both academic and industrial perspectives.However,before recent advances in chemical catalysis,there were scarce protocols toward constructing enantioenriched tertiary allylic alcohol scaffolds.In this context,peptide-mimic phosphonium salts were found to be highly efficient in catalytic asymmetricα-hydroxylation ofα,β-unsaturated and/orβ,Y-unsaturated compounds with satisfactory regio-and stereochemical outcomes(up to 97%yield and 95%ee).This methodology tolerates a broad array of substrates and thus provides an expeditious and unified platform for the assembly of enantioenriched tertiary allylic alcohols by avoiding the use of additional reductants and expensive metal catalysts.Furthermore,the power of this protocol is enlarged by simple conditions and the use of air as a source of hydroxyl functionality.展开更多
基金Financial support was provided by the National Natural Science Foundation of China(22222109,21921002,22101189 and 22371190)the National Key R&DProgramof China(2018YFA0903500)+3 种基金Beijing National Laboratory for Molecular Sciences(BNLMs202101)Sichuan Science Foundation for Distinguished Young Scholars(2023NSFSC1921)Sichuan Provincial Natural Science Foundation(2022NSFSC1181,24NSFSC6590)Fundamental Research Funds from Sichuan University(2020SCUNL108)and Fundamental Research Funds for the Central Universities.
文摘The development of catalytic asymmetric methods that enable access to value-added functionalities or structures,exemplified by allylic alcohols,is a highly interesting yet challenging topic from both academic and industrial perspectives.However,before recent advances in chemical catalysis,there were scarce protocols toward constructing enantioenriched tertiary allylic alcohol scaffolds.In this context,peptide-mimic phosphonium salts were found to be highly efficient in catalytic asymmetricα-hydroxylation ofα,β-unsaturated and/orβ,Y-unsaturated compounds with satisfactory regio-and stereochemical outcomes(up to 97%yield and 95%ee).This methodology tolerates a broad array of substrates and thus provides an expeditious and unified platform for the assembly of enantioenriched tertiary allylic alcohols by avoiding the use of additional reductants and expensive metal catalysts.Furthermore,the power of this protocol is enlarged by simple conditions and the use of air as a source of hydroxyl functionality.