期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不同外科修补方案治疗剖宫产术后子宫切口憩室的疗效比较 被引量:17
1
作者 吴佳莹 张文渊 黄筱竑 《中国内镜杂志》 2018年第3期50-54,共5页
目的探讨宫腹腔镜联合与经阴道修补术式对剖宫产术后子宫切口憩室(PCSD)患者月经时间、宫内妊娠率及复发率的影响。方法选取该院2014年1月-2016年1月收治PCSD患者共100例,根据手术方案差异分为A组(50例)和B组(50例),分别采用宫腹腔镜联... 目的探讨宫腹腔镜联合与经阴道修补术式对剖宫产术后子宫切口憩室(PCSD)患者月经时间、宫内妊娠率及复发率的影响。方法选取该院2014年1月-2016年1月收治PCSD患者共100例,根据手术方案差异分为A组(50例)和B组(50例),分别采用宫腹腔镜联合修补术式和经阴道修补术式治疗,比较两组患者手术用时、术中失血量、首次肛门排气时间、术后阴道流血时间、住院时间、月经时间恢复效果、治疗前后憩室宽度和深度、随访宫内妊娠率及复发率。结果 B组患者手术用时明显优于A组(P<0.05);A组患者术中失血量、术后阴道流血时间及住院时间均明显优于B组(P<0.05);两组患者首次肛门排气时间比较差异无统计学意义(P>0.05);两组患者月经时间恢复效果比较差异无统计学意义(P>0.05);两组患者治疗后子宫憩室宽度和深度明显短于治疗前(P<0.05);两组患者治疗后子宫憩室宽度和深度组间比较差异无统计学意义(P>0.05);两组患者随访期内宫内妊娠率和复发率比较差异无统计学意义(P>0.05)。结论两种手术修补方案治疗PCSD总体疗效接近,但宫腹腔镜联合修补术式有助于降低医源性创伤程度,减少术后阴道流血和住院时间,而经阴道修补术式则操作更为简便,手术难度显著降低。 展开更多
关键词 手术 剖宫产术后子宫切口憩室(PCSD) 宫腔镜 腹腔镜 经阴道
下载PDF
生物反馈电刺激对围绝经期子宫全切妇女的影响 被引量:7
2
作者 吴佳莹 张文渊 黄筱竑 《中国现代医学杂志》 CAS 2018年第30期121-124,共4页
目的探究生物反馈电刺激对围绝经子宫全切妇女的影响。方法选取2013年6月-2016年6月该院收治的98例围绝经期子宫全切治疗后盆底功能障碍患者作为研究对象,采用随机数字表法将其分为对照组和观察组,每组各49例。对照组采用盆底肌训练联... 目的探究生物反馈电刺激对围绝经子宫全切妇女的影响。方法选取2013年6月-2016年6月该院收治的98例围绝经期子宫全切治疗后盆底功能障碍患者作为研究对象,采用随机数字表法将其分为对照组和观察组,每组各49例。对照组采用盆底肌训练联合雌三醇阴道给药治疗,观察组在对照组的治疗基础上辅以生物反馈电刺激治疗。比较两组治疗前、后的盆底肌张力情况、盆腔脏器脱垂情况及压力性尿失禁(SUI)分度。结果治疗前观察组与对照组阴道收缩压(VSP)、阴道静息压(VRP)及阴道收缩持续时间(PT)比较,差异无统计学意义(P>0.05);治疗6个月后两组VSP、VRP及PT较治疗前均改善,且治疗后观察组与对照组VSP、VRP及PT比较,差异有统计学意义(P <0.05),观察组VSP、VRP及PT高于对照组。治疗后3及6个月观察组与对照组盆腔脏器脱垂情况比较,差异有统计学意义(P <0.05),观察组阴道、膀胱及直肠脱垂发生率低于对照组。治疗后3和6个月观察组与对照组SUI分度比较,差异有统计学意义(P <0.05),观察组SUI分度优于对照组。结论给予围绝经期子宫全切治疗后盆底功能障碍患者综合康复疗法较盆底肌训练联合雌三醇阴道治疗能改善患者的盆底肌张力和尿失禁情况,降低盆腔脏器脱垂发生率,可在临床进一步推广和使用。 展开更多
关键词 围绝经期 子宫全切术 盆底肌训练 雌三醇 生物反馈电刺激
下载PDF
Anticorrosion of WO<sub>3</sub>-Modified TiO<sub>2</sub>Thin Film Prepared by Peroxo Sol-Gel Method
3
作者 jia-ying wu Yu-Wen Chen 《Modern Research in Catalysis》 2020年第3期35-46,共12页
The aim of this study was to develop a method to prepare WO<sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span>&l... The aim of this study was to develop a method to prepare WO<sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film which has high anticorrosion property when it was coated on type 304 stainless steel. A series of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-modified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols were synthesized by peroxo-sol gel method using TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> as the starting materials. TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> was converted to Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> gel. H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> were added in Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> solution and heated at 95<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was transparent, in neutral (pH^7) solution, stable suspension without surfactant, nano-crystallite and no annealing is needed after coating, and very stable for 2 years in stock. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was formed with anatase crystalline structure. These sols were characterized by XRD, TEM, and XPS. The sol was used to coat on stainless steel 304 by dip-coating. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> was anatase in structure as characterized by X-ray diffraction. There were no WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> XRD peaks in the WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols, indicating that WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> particles were very small, possibly incorporating into TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> structure, providing the amount of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was very small. The TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> particles were rhombus shape. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> had smaller size area than pure TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">. The SEM results showed that the film coated on the glass substrate was very uniform. All films were nonporous and dense films. Its hardness reached 2 H after drying at 100<span style="white-space:normal;">°</span>C, and reached 5 H after annealing at 400<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film coated on 304 stainless steel had better anticorrosion capability than the unmodified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film under UV light illumination. The optimum weight ratio of TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">: WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was 100:4.</span> 展开更多
关键词 ANTICORROSION Photocatalyst NANOCOATING WO3-TiO2 Coating Sol-Gel Method Nanomaterial
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部