Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule init...Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule initiation and development. Ovule and seed numbers are significantly different when comparing BR-related mutants to wild-type con-trols. Detailed observation indicates that BR regulates the expression level of genes related to ovule development, includ-ing HLL, ANT, and AP2, either directly by targeting the promoter sequences or indirectly via regulation by BR-induced transcription factor BZR1. Also, Western blot demonstrates that the dephosphorylation level of BZR1 is consistent with ovule and seed number. The intragenic bzrl-lD suppressors bzs247 and bzs248 have much fewer ovules and seeds than bzrl-lD, which are similar to wild-type, suggesting that the phenotype can be rescued. The molecular and genetic experi-ments confirm that BZR1 and AP2 probably affect Arabidopsis ovule number determination antagonistically.展开更多
Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hem...Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the host's melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the host's melanization.展开更多
Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to ...Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mech- anisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.展开更多
Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially...Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism.展开更多
Most molecular work on the roles of heat shock proteins (hsps) in host-parasite interaction has focused on vertebrates, rather than invertebrates. Here the full length complementary DNA (cDNA) sequences of three h...Most molecular work on the roles of heat shock proteins (hsps) in host-parasite interaction has focused on vertebrates, rather than invertebrates. Here the full length complementary DNA (cDNA) sequences of three hsp genes (hsp20, hsp75 and hsp90) were amplified from Pieris rapae, and their transcriptional responsiveness to parasitization by the endoparasitic wasp Pteromalus puparum were investigated. The cDNA sequence analysis of hsp20, hsp75 and hsp90 revealed open reading frames of 531, 2328 and 2 157 bp in length, which encode proteins with calculated molecular weights of 19.5, 75.48 and 82.7 kDa, respectively. The comparison of amino acid sequences showed that P rapae hsp20 shared highly divergent homology to that of other insects, while hsp75 and hsp90 showed high homology to their counterparts of other species. The expression analysis indicated that these three genes were influenced in response to parasitization by P. puparum. The hsp20 transcripts in parasitized pupae were higher compared to non- parasitized pupae. The expression of hsp75 and hsp90 were down-regulated following parasitization. The results indicate that hsps are involved in host-parasitoid interactions.展开更多
文摘Ovule and seed developments are crucial processes during plant growth, which are affected by different signaling pathways. In this paper, we demonstrate that the brassinosteroid (BR) signal is involved in ovule initiation and development. Ovule and seed numbers are significantly different when comparing BR-related mutants to wild-type con-trols. Detailed observation indicates that BR regulates the expression level of genes related to ovule development, includ-ing HLL, ANT, and AP2, either directly by targeting the promoter sequences or indirectly via regulation by BR-induced transcription factor BZR1. Also, Western blot demonstrates that the dephosphorylation level of BZR1 is consistent with ovule and seed number. The intragenic bzrl-lD suppressors bzs247 and bzs248 have much fewer ovules and seeds than bzrl-lD, which are similar to wild-type, suggesting that the phenotype can be rescued. The molecular and genetic experi-ments confirm that BZR1 and AP2 probably affect Arabidopsis ovule number determination antagonistically.
基金supported by the Applied Basic Research Program of Yunnan Province (No. 2010CD063)the Science Foundation of Southwest Forestry University (No. 110903)+2 种基金the Science Foundation of the Department of Education of Yunnan Province (No. 2010Y294)the Open Foundation of Key Laboratory of Forest Disaster Warning and Control of Yunnan Province (No. ZK09A101)the Key Subject of Forest Protection of Yunnan Province (No. XKZ200905),China
文摘Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the host's melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the host's melanization.
文摘Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mech- anisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.
基金supported by the National Basic Research Program (973) of China (No. 2006CB102005)the National Natural Science Foundation of China (Nos. 30571251 and 30971959)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No. Z3090191)and the Program for New Century Excellent Talents in University of the Ministry of Education of China (No. NCET-05-0513)
文摘Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism.
文摘Most molecular work on the roles of heat shock proteins (hsps) in host-parasite interaction has focused on vertebrates, rather than invertebrates. Here the full length complementary DNA (cDNA) sequences of three hsp genes (hsp20, hsp75 and hsp90) were amplified from Pieris rapae, and their transcriptional responsiveness to parasitization by the endoparasitic wasp Pteromalus puparum were investigated. The cDNA sequence analysis of hsp20, hsp75 and hsp90 revealed open reading frames of 531, 2328 and 2 157 bp in length, which encode proteins with calculated molecular weights of 19.5, 75.48 and 82.7 kDa, respectively. The comparison of amino acid sequences showed that P rapae hsp20 shared highly divergent homology to that of other insects, while hsp75 and hsp90 showed high homology to their counterparts of other species. The expression analysis indicated that these three genes were influenced in response to parasitization by P. puparum. The hsp20 transcripts in parasitized pupae were higher compared to non- parasitized pupae. The expression of hsp75 and hsp90 were down-regulated following parasitization. The results indicate that hsps are involved in host-parasitoid interactions.