期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced ionic conductivity in LAGP/LATP composite electrolyte 被引量:2
1
作者 Shi-Gang Ling jia-yue peng +3 位作者 Qi Yang Ji-Liang Qiu Jia-Ze Lu Hong Li 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期494-501,共8页
Nasicon materials (sodium superionic conductors) such as Li1.5A10.5Ge1.5(PO4)3 (LAGP) and Li1.4Al0.4Til.6(PO4)3 (LATP) have been considered as important solid electrolytes due to their high ionic conductivit... Nasicon materials (sodium superionic conductors) such as Li1.5A10.5Ge1.5(PO4)3 (LAGP) and Li1.4Al0.4Til.6(PO4)3 (LATP) have been considered as important solid electrolytes due to their high ionic conductivity and chemical stability. Compared to LAGP, LATP has higher bulk conductivity around 10^-3 S/cm at room temperature; however, the apparent grain boundary conductivity is almost two orders of magnitude lower than the bulk, while LAGP has similar bulk and grain boundary conductivity around the order of 10-4 S/cm. To make full use of the advantages of the two electrolytes, pure phase Li1.5A10.5Ge1.5(PO4)3 and Li1.4A10.4Ti1.6(PO4)3 were synthesized through solid state reaction, a series of composite electrolytes consisting of LAGP and LATP with different weight ratios were designed. XRD and variable temperature AC impedance spectra were carried out to clarify the crystal structure and the ion transport properties of the composite electrolytes. The results indicate that the composite electrolyte with the LATP/LAGP weight ratio of 80:20 achieved the highest bulk conductivity which shall be due to the formation of solid solution phase Li1.42Alo.42Geo.3Ti1 .28(PO4)3, while the highest grain boundary conductivity appeared at the LATP/LAGP weight ratio of 20:80 which may be due to the excellent interfacial phase between Li1+xAlxGeyTi2-x-y(PO4)3/LATE All the composite electrolytes demonstrated higher total conductivity than the pure LAGP and LATE which highlights the importance of heterogeneous interface on regulating the ion transport properties. 展开更多
关键词 solid electrolyte COMPOSITE heterogeneous interface enhanced conductivity
下载PDF
A high-performance rechargeable Li–O_2 battery with quasi-solid-state electrolyte
2
作者 jia-yue peng Jie Huang +5 位作者 Wen-Jun Li Yi Wang Xiqian Yu Yongsheng Hu Liquan Chen Hong Li 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期556-560,共5页
A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6... A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles. 展开更多
关键词 quasi-solid-state electrolyte Li-O2 battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部