Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, ...Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI):2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2 -deoxyguanosine (8-OHdG), 8-iso-prostaglandin F(8-iso PGF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-iso PGFand HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-iso PGFmediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.展开更多
基金supported by the National Natural Science Foundation of China (No. 81872585)the National Key Research and Development Program of China (No. 2016YFC1302700)。
文摘Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI):2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2 -deoxyguanosine (8-OHdG), 8-iso-prostaglandin F(8-iso PGF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-iso PGFand HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-iso PGFmediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.