期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage 被引量:1
1
作者 Kun Liu jia-ao wang +5 位作者 Hongfei Zheng Xiaodong Sun Zhimo Yang Jianzong Man Xinyu wang Juncai Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期88-97,共10页
To inhibit the agglomeration of tin-based nanomaterials and simplify the complicated synthesis process,a facile and eco-friendly self-formed template method is reported to synthesize tin submicron spheres dispersed in... To inhibit the agglomeration of tin-based nanomaterials and simplify the complicated synthesis process,a facile and eco-friendly self-formed template method is reported to synthesize tin submicron spheres dispersed in nitrogen-doped porous carbon(Sn/NPC)by pyrolysis of a mixture of disodium stannous citrate and urea.The vital point of this strategy is the formation of Na_(2)CO_(3)templates during pyrolysis.This self-formed Na_(2)CO_(3)acts as porous templates to support the formation of NPC.The obtained NPC provides good electronic conductivity,ample defects,and more active sites.Serving as anode for Li-ion batteries,the Sn/NPC electrode obtains a stable discharge capacity of 674.1 mAh/g after 150 cycles at 0.1 A/g.Especially,a high discharge capacity of 331.2 mAh/g can be achieved after 1100 cycles at 3 A/g.Additionally,a full cell coupled with LiCoO_(2)as cathode yields a discharge capacity of 524.8 mAh/g after 150 cycles at 0.1 A/g.In-situ XRD is implemented to investigate the alloying/dealloying reaction mechanisms.Density functional theory calculation ulteriorly explicates that NPC heightens intrinsic electronic conductivity,and NPC especially pyrrolic-N and pyridinic-N doping facilitates the Li-adsorption ability.Climbing image nudged elastic band method reveals low Li~+diffusion energy barrier in presence of N atoms,which accounts for the terrific electrochemical properties of Sn/NPC electrode. 展开更多
关键词 Tin submicron spheres Nitrogen-doped porous carbon Self-formed template In-situ XRD Li-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部