Vascularization of acellular nerves has been shown to contribute to nerve bridging.In this study,we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the...Vascularization of acellular nerves has been shown to contribute to nerve bridging.In this study,we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves.The rat nerve defects were treated with acellular nerve grafting(control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein(experimental group).As shown through two-dimensional imaging,the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation,and gradually covered the entire graft at day 21.The vascular density,vascular area,and the velocity of revascularization in the experimental group were all higher than those in the control group.These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.展开更多
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-H...Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.展开更多
基金supported by the Specialized Research Fund for Science and Technology Plan of Guangdong Province in China,No.201313060300007the National High-Technology Research and Development Program of China(863 Program),No.2012AA020507+2 种基金the National Basic Research Program of China(973 Program),No.2014CB542201the Doctoral Program of Higher Education of China,No.20120171120075Doctoral Start-up Project of the Natural Science Foundation of Guangdong Province in China,No.S201204006336 and 1045100890100590
文摘Vascularization of acellular nerves has been shown to contribute to nerve bridging.In this study,we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves.The rat nerve defects were treated with acellular nerve grafting(control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein(experimental group).As shown through two-dimensional imaging,the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation,and gradually covered the entire graft at day 21.The vascular density,vascular area,and the velocity of revascularization in the experimental group were all higher than those in the control group.These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.
基金supported by the National Key Technology R&D Program (2009BAG12A03)Innovation Project of Chinese Academy of Sciences of China (KJCX2-EW-L02-1)
文摘Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.