A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidificat...A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed.By controlling the concentrations of major alloying elements(Cu,Mg),the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility(HTS)was determined.The results showed that the Al−4.6Cu−0.4Mg(wt.%)alloy,which contained the smallest fraction of LMP eutectics among the investigated alloys,was observed to be the most susceptible to hot tearing.With the amount of total residual liquid being approximately the same in the alloys,the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics.Specifically,the higher the amount of LMP eutectics was,the lower the HTS of the alloy was.Further,the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.展开更多
To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearin...To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.展开更多
文摘A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed.By controlling the concentrations of major alloying elements(Cu,Mg),the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility(HTS)was determined.The results showed that the Al−4.6Cu−0.4Mg(wt.%)alloy,which contained the smallest fraction of LMP eutectics among the investigated alloys,was observed to be the most susceptible to hot tearing.With the amount of total residual liquid being approximately the same in the alloys,the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics.Specifically,the higher the amount of LMP eutectics was,the lower the HTS of the alloy was.Further,the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.
文摘To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.