To realize the goal of carbon peaking and carbon neutrality,CO_(2) capture and utilization technology is becoming increasingly urgent.However,the low efficiency and complex processes limit its large-scale application....To realize the goal of carbon peaking and carbon neutrality,CO_(2) capture and utilization technology is becoming increasingly urgent.However,the low efficiency and complex processes limit its large-scale application.Among utilization technology of CO_(2),electrochemical CO_(2) reduction reaction(CO_(2)RR)has attracted interest,attributing to the use of clean energy and the final product of value-added fuels.The construction of catalysts with integrated CO_(2) capture and reduction ability is expected to bridge the gap between CO_(2) capture and conversion,achieving the direct utilization of flue gas,reducing costs,and simplifying devices.Keeping` this in mind,we give this review to introduce the problems of lowconcentration CO_(2)RR and the significance of coupled CO_(2) capture/conversion electrocatalysts in addressing the emission of industrial flue gas first.Then,the regulation strategies,including functional group modification,co-catalytic effect,and catalysts-impurities interaction,which affected the CO_(2) capture and electroreduction capacity towards catalysts were summarized and discussed.Finally,the challenges and perspectives about the design for linked CO_(2) capture/conversion processes were proposed.This review will provide new insight into the building of multifunctional catalysts for CO_(2) conversion.展开更多
文摘To realize the goal of carbon peaking and carbon neutrality,CO_(2) capture and utilization technology is becoming increasingly urgent.However,the low efficiency and complex processes limit its large-scale application.Among utilization technology of CO_(2),electrochemical CO_(2) reduction reaction(CO_(2)RR)has attracted interest,attributing to the use of clean energy and the final product of value-added fuels.The construction of catalysts with integrated CO_(2) capture and reduction ability is expected to bridge the gap between CO_(2) capture and conversion,achieving the direct utilization of flue gas,reducing costs,and simplifying devices.Keeping` this in mind,we give this review to introduce the problems of lowconcentration CO_(2)RR and the significance of coupled CO_(2) capture/conversion electrocatalysts in addressing the emission of industrial flue gas first.Then,the regulation strategies,including functional group modification,co-catalytic effect,and catalysts-impurities interaction,which affected the CO_(2) capture and electroreduction capacity towards catalysts were summarized and discussed.Finally,the challenges and perspectives about the design for linked CO_(2) capture/conversion processes were proposed.This review will provide new insight into the building of multifunctional catalysts for CO_(2) conversion.