To solve the problems in online target detection on the embedded platform,such as high missed detection rate,low accuracy,and slow speed,a lightweight target recognition method of MobileNetV3-CenterNet is proposed.Thi...To solve the problems in online target detection on the embedded platform,such as high missed detection rate,low accuracy,and slow speed,a lightweight target recognition method of MobileNetV3-CenterNet is proposed.This method combines the anchor-free Centernet network with the MobileNetV3 small network and is trained on the University at Albany Detection and Tracking(UA-DETRAC)and the Pattern Analysis,Statical Modeling and Computational Learn-ing Visual Object Classes(PASCAL VOC)07+12 standard datasets.While reducing the scale of the network model,the MobileNetV3-CenterNet model shows a good balance in the accuracy and speed of target recognition and effectively solves the problems of missing detection of dense and small targets in online detection.To verify the recognition performance of the model,it is tested on 2683 images of the UA-DETRAC and PASCAL VOC 07+12 datasets,and compared with the analysis results of CenterNet-Deep Layer Aggregation(DLA)34,CenterNet-Residual Network(ResNet)18,CenterNet-MobileNetV3-large,You Only Look Once vision 3(YOLOv3),MobileNetV2-YOLOv3,Single Shot Multibox Detector(SSD),MobileNetV2-SSD and Faster region convolutional neural network(RCNN)models.The results show that the MobileNetV3-CenterNet model accurately rec-ognized the dense targets and small targets missed by other methods,and obtained a recognition accuracy of 99.4%with a running speed at 53(on a server)and 14(on an ipad)frame/s,respectively.The MobileNetV3-CenterNet lightweight target recognition method will provide effective technical support for the target recognition of deep learning networks in embedded platforms and online detection.展开更多
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl...The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.展开更多
With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components ...With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.展开更多
The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in...The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in depth.Engi-neering experiences show that the speed and load also affect the tribological properties,but these have not been systematically analyzed.The purpose of this paper is to evaluate the tribological properties of the commonly used materials(CuPb1 5Sn5 and 38CrMoAl/42CrMo)for cylinder block/valve plate with different heat treatment and con-tact pressure at different speed.During the test,tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump,the friction coefficient,wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed.Results indicate that:(1)contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min;(2)in the terms of wear resistance,quench-tempered and nitrided 38CrMoAl(38CrMoAl QTN for short)is better than quench-tem-pered and nitrided 42CrMo,although they are all commonly used materials in the axial piston pump;(3)2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb1 5Sn5 on the tribometer,which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed;(4)the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump.This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.展开更多
To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spo...To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.展开更多
Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foregro...Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foreground pixels and background pixels independently is proposed and investigated.Since details are mainly contained in the foreground,the weighted coupling of histogram equalization and Laplace transform were adopted to balance contrast enhancement and details preservation.The weighting factors of image foreground and background were determined by the amount of their respective information.The proposed method was conducted to images acquired from CVG⁃UGR and US⁃SIPI image databases and then compared with other methods such as clipping histogram spikes,histogram addition,and non⁃linear transformation to verify its validity.Results show that the proposed algorithm can effectively enhance the contrast without introducing distortions,and preserve the mean brightness and details well at the same time.展开更多
基金supported by Research and Development Project of Key Core Technology and Common Technology in Shanxi Province(No.2020XXX009).
文摘To solve the problems in online target detection on the embedded platform,such as high missed detection rate,low accuracy,and slow speed,a lightweight target recognition method of MobileNetV3-CenterNet is proposed.This method combines the anchor-free Centernet network with the MobileNetV3 small network and is trained on the University at Albany Detection and Tracking(UA-DETRAC)and the Pattern Analysis,Statical Modeling and Computational Learn-ing Visual Object Classes(PASCAL VOC)07+12 standard datasets.While reducing the scale of the network model,the MobileNetV3-CenterNet model shows a good balance in the accuracy and speed of target recognition and effectively solves the problems of missing detection of dense and small targets in online detection.To verify the recognition performance of the model,it is tested on 2683 images of the UA-DETRAC and PASCAL VOC 07+12 datasets,and compared with the analysis results of CenterNet-Deep Layer Aggregation(DLA)34,CenterNet-Residual Network(ResNet)18,CenterNet-MobileNetV3-large,You Only Look Once vision 3(YOLOv3),MobileNetV2-YOLOv3,Single Shot Multibox Detector(SSD),MobileNetV2-SSD and Faster region convolutional neural network(RCNN)models.The results show that the MobileNetV3-CenterNet model accurately rec-ognized the dense targets and small targets missed by other methods,and obtained a recognition accuracy of 99.4%with a running speed at 53(on a server)and 14(on an ipad)frame/s,respectively.The MobileNetV3-CenterNet lightweight target recognition method will provide effective technical support for the target recognition of deep learning networks in embedded platforms and online detection.
基金Supported by National Natural Science Foundation of China(Grant No.51805350)Key Technologies Research and Development Program of China(Grant No.2018YFB2001202)+1 种基金Natural Science Foundation of Shanxi Province of China(Grant No.201801D221226)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable.
基金Supported by Key Technologies Research and Development Program of China(Grant No.2019YFB2004502)National Natural Science Foundation of China(Grant Nos.51805350,51775362)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775362,51705351)International Cooperation Project of Shanxi Province(Grant No.2016-002)Natural Science Foundation of Shanxi Province(Grant No.201901D111054).
文摘The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in depth.Engi-neering experiences show that the speed and load also affect the tribological properties,but these have not been systematically analyzed.The purpose of this paper is to evaluate the tribological properties of the commonly used materials(CuPb1 5Sn5 and 38CrMoAl/42CrMo)for cylinder block/valve plate with different heat treatment and con-tact pressure at different speed.During the test,tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump,the friction coefficient,wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed.Results indicate that:(1)contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min;(2)in the terms of wear resistance,quench-tempered and nitrided 38CrMoAl(38CrMoAl QTN for short)is better than quench-tem-pered and nitrided 42CrMo,although they are all commonly used materials in the axial piston pump;(3)2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb1 5Sn5 on the tribometer,which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed;(4)the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump.This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51775362 and 51805350)the Natural Science Foundation of Shanxi Province(Grant No.201801D221226).
文摘To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.
基金Sponsored by the National Key R&D Program of China(Grant No.2018YFB1308700)the Research and Development Project of Key Core Technology and Common Technology in Shanxi Province(Grant Nos.2020XXX001,2020XXX009)。
文摘Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foreground pixels and background pixels independently is proposed and investigated.Since details are mainly contained in the foreground,the weighted coupling of histogram equalization and Laplace transform were adopted to balance contrast enhancement and details preservation.The weighting factors of image foreground and background were determined by the amount of their respective information.The proposed method was conducted to images acquired from CVG⁃UGR and US⁃SIPI image databases and then compared with other methods such as clipping histogram spikes,histogram addition,and non⁃linear transformation to verify its validity.Results show that the proposed algorithm can effectively enhance the contrast without introducing distortions,and preserve the mean brightness and details well at the same time.