Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfac...Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene(NG)on SiC(NG@SiC).This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction,making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration.Both density functional theory(DFT)analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds,enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation.As a proof-of-concept study,this well-designed NG@SiC anode shows good reversible capacity(1197.5 mAh g^(−1)after 200 cycles at 0.1 A g^(−1))and cycling durability with 76.6%capacity retention at 447.8 mAh g^(−1)after 1000 cycles at 10.0 A g^(−1).As expected,the lithium-ion full cell(LiFePO_(4)/C//NG@SiC)shows superior rate capability and cycling stability.This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond.展开更多
The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with dive...The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.展开更多
Artificial nanopores have become promising tools for sensing DNA.Here,we report a new technique for sensing DNA through a conical-shaped nanopore embedded in track-etched polyethylene terephthalate(PET)membrane.Two di...Artificial nanopores have become promising tools for sensing DNA.Here,we report a new technique for sensing DNA through a conical-shaped nanopore embedded in track-etched polyethylene terephthalate(PET)membrane.Two different streptavidin-conjugated monovalent DNA probes were prepared that can bind to two distinct segments(at either end) of the target DNA.The size of target DNA-linked to the two streptavidin-conjugated monovalent DNA probes is double that of the individual probes.By precisely controlling the tip diameter of the conical nanopore embedded in the PET polymer,events due to the translocation of the streptavidin-conjugated monovalent DNA probes through the nanopore can be filtered and purposely undetected,whereas the current pulses due to the translocation of the target DNA-induced selfassembled complexes can be detected.The two streptavidin-conjugated DNA probes cannot be linked by multimismatched DNA.Therefore,multi-mismatched(nonspecific) DNA will not induce any current pulse signatures.The current pulse signatures for the self-assembled complex can be used to confirm the presence of the target DNA.The size-dependent detection of self-assembled complexes on the molecular level shows strong promise forthe detection of biomolecules without interference from the probes.展开更多
Differential evolution (DE) is a kind of evolutionary algorithms, which is suitable for solving complex optimization problems. Mutation is a crucial step in DE that generates new solutions from old ones. It was argu...Differential evolution (DE) is a kind of evolutionary algorithms, which is suitable for solving complex optimization problems. Mutation is a crucial step in DE that generates new solutions from old ones. It was argued and has been commonly adopted in DE that the solutions selected for mutation should have mutually different indices. This restrained condition, however, has not been verified either theoretically or empirically yet. In this paper, we empirically investigate the selection of solutions for mutation in DE. From the observation of the extensive experiments, we suggest that the restrained condition could be relaxed for some classical DE versions as well as some advanced DE variants. Moreover, relaxing the restrained condition may also be useful in designing better future DE algorithms.展开更多
基金supported by the National Natural Science Foundation of China(No.22074025)Guangzhou Municipal Science and Technology Project(No.202102010473)+5 种基金Science and Technology Program of Guangdong Province(2019B090905007)National Science Foundation of Guangdong Province(2021A1515010078)the Scientific and Technological Plan of Guangdong Province(2019B090905007)Natural Science Foundation of Shandong Province(Grant No.ZR2023QE059)China Postdoctoral Science Foundation(Grant No.2021M700915)Guangdong Basic and Applied Basic Research Foundation(2020A1515111086,2020A1515110219,and 2020A1515110770)for the financial support.
文摘Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene(NG)on SiC(NG@SiC).This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction,making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration.Both density functional theory(DFT)analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds,enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation.As a proof-of-concept study,this well-designed NG@SiC anode shows good reversible capacity(1197.5 mAh g^(−1)after 200 cycles at 0.1 A g^(−1))and cycling durability with 76.6%capacity retention at 447.8 mAh g^(−1)after 1000 cycles at 10.0 A g^(−1).As expected,the lithium-ion full cell(LiFePO_(4)/C//NG@SiC)shows superior rate capability and cycling stability.This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond.
基金supported by the National Key R&D Program of China(2018AAA0101203)the National Natural Science Foundation of China(61673403,71601191)the JSPS KAKENHI(JP17K12751)。
文摘The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.
基金supported by the National Natural Science Foundation of China(21190040 and 21275137)
文摘Artificial nanopores have become promising tools for sensing DNA.Here,we report a new technique for sensing DNA through a conical-shaped nanopore embedded in track-etched polyethylene terephthalate(PET)membrane.Two different streptavidin-conjugated monovalent DNA probes were prepared that can bind to two distinct segments(at either end) of the target DNA.The size of target DNA-linked to the two streptavidin-conjugated monovalent DNA probes is double that of the individual probes.By precisely controlling the tip diameter of the conical nanopore embedded in the PET polymer,events due to the translocation of the streptavidin-conjugated monovalent DNA probes through the nanopore can be filtered and purposely undetected,whereas the current pulses due to the translocation of the target DNA-induced selfassembled complexes can be detected.The two streptavidin-conjugated DNA probes cannot be linked by multimismatched DNA.Therefore,multi-mismatched(nonspecific) DNA will not induce any current pulse signatures.The current pulse signatures for the self-assembled complex can be used to confirm the presence of the target DNA.The size-dependent detection of self-assembled complexes on the molecular level shows strong promise forthe detection of biomolecules without interference from the probes.
基金Acknowledgements The authors would like to thank the anonymous reviewers for their very constructive and helpful suggestions. This work was supported in part by the National Basic Research Program (973 Program) of China (2011CB013104), in part by the Innovation-driven Plan in Central South University (2015CXS012 and 2015CX007), in part by the National Natural Science Foundation of China (Grant Nos. 61273314 and 61673397), in part by the EU Horizon 2020 Marie Sldodowska-Curie Individual Fellowships (Project ID: 661327), in part by the Hunan Provincial Natural Science Fund for Distinguished Young Scholars (2016JJ1018), in part by the Program for New Century Excellent Talents in University (NCET-13-0596), and in part by State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology.
文摘Differential evolution (DE) is a kind of evolutionary algorithms, which is suitable for solving complex optimization problems. Mutation is a crucial step in DE that generates new solutions from old ones. It was argued and has been commonly adopted in DE that the solutions selected for mutation should have mutually different indices. This restrained condition, however, has not been verified either theoretically or empirically yet. In this paper, we empirically investigate the selection of solutions for mutation in DE. From the observation of the extensive experiments, we suggest that the restrained condition could be relaxed for some classical DE versions as well as some advanced DE variants. Moreover, relaxing the restrained condition may also be useful in designing better future DE algorithms.