Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic ...Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.展开更多
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in...This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment.展开更多
Two-dimensional(2D)ternary chalcogenides have attracted great attentions because of their novel chemical and physical properties arising from the synergistic effect and stoichiometric variation with the additional thi...Two-dimensional(2D)ternary chalcogenides have attracted great attentions because of their novel chemical and physical properties arising from the synergistic effect and stoichiometric variation with the additional third element compared with their binary counterparts.Here,high-quality 2D tantalum nickel selenide(Ta_(2)NiSe_(5))nanosheets are successfully fabricated by a liquid-phase exfoliation(LPE)method.The ultrafast excited carrier relaxation time and nonlinear optical absorption response are investigated and reveal that the prepared 2D Ta_(2)NiSe_(5)nanosheets have excellent broadband saturable absorption properties,which are further illustrated by three passively Q-switched(PQS)allsolid-state lasers operating at 1.0,2.0 and 2.8μm with the Ta_(2)NiSe_(5)nanosheet-based saturable absorber(SA).Furthermore,mode-locked laser operation with the pulse width as short as 356 fs is also realized at 1.0μm.This work not only demonstrates the excellent nonlinear optical proprieties and optical modulation performance of Ta_(2)NiSe_(5),but also paves the way for exploring the photonic and optoelectronic proprieties of ternary chalcogenide materials.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12172012 and 11802005)。
文摘Curved-beams can be used to design modular multistable metamaterials(MMMs)with reprogrammable material properties,i.e.,programmable curved-beam periodic structure(PCBPS),which is promising for controlling the elastic wave propagation.The PCBPS is theoretically equivalent to a spring-oscillator system to investigate the mechanism of bandgap,analyze the wave propagation mechanisms,and further form its geometrical and physical criteria for tuning the elastic wave propagation.With the equivalent model,we calculate the analytical solutions of the dispersion relations to demonstrate its adjustability,and investigate the wave propagation characteristics through the PCBPS.To validate the equivalent system,the finite element method(FEM)is employed.It is revealed that the bandgaps of the PCBPS can be turned on-and-off and shifted by varying its physical and geometrical characteristics.The findings are highly promising for advancing the practical application of periodic structures in wave insulation and propagation control.
基金Project supported by the National Natural Science Foundation of China(Nos.11802005,12172012,11832002,and 11427801)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China(No.KM201910005035)
文摘This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment.
基金financially supported by the National Natural Science Foundation of China (61975095, 61675116, and 61575110)the Young Scholars Program of Shandong University (2017WLJH48)+3 种基金the Youth Cross Innovation Group of Shandong University (2020QNQT)the Key Research and Development Program of Shandong Province (2019JZZY020206)Shenzhen Science and Technology Research and Development Funds (JCYJ20180305163932273)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201908)
文摘Two-dimensional(2D)ternary chalcogenides have attracted great attentions because of their novel chemical and physical properties arising from the synergistic effect and stoichiometric variation with the additional third element compared with their binary counterparts.Here,high-quality 2D tantalum nickel selenide(Ta_(2)NiSe_(5))nanosheets are successfully fabricated by a liquid-phase exfoliation(LPE)method.The ultrafast excited carrier relaxation time and nonlinear optical absorption response are investigated and reveal that the prepared 2D Ta_(2)NiSe_(5)nanosheets have excellent broadband saturable absorption properties,which are further illustrated by three passively Q-switched(PQS)allsolid-state lasers operating at 1.0,2.0 and 2.8μm with the Ta_(2)NiSe_(5)nanosheet-based saturable absorber(SA).Furthermore,mode-locked laser operation with the pulse width as short as 356 fs is also realized at 1.0μm.This work not only demonstrates the excellent nonlinear optical proprieties and optical modulation performance of Ta_(2)NiSe_(5),but also paves the way for exploring the photonic and optoelectronic proprieties of ternary chalcogenide materials.