期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental realization of fractal fretwork metasurface for sound anomalous modulation
1
作者 何佳杰 于书萌 +1 位作者 江雪 他得安 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期473-478,共6页
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ... Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption. 展开更多
关键词 acoustic metasurface fractal geometry sound anomalous modulation
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM
2
作者 jiajie he Fuzheng Liu +3 位作者 Xiangyi Geng Xifeng Liang Faye Zhang Mingshun Jiang 《Structural Durability & Health Monitoring》 EI 2024年第1期37-54,共18页
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia... Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments. 展开更多
关键词 Symplectic geometry mode decomposition calculus operator cosine difference limitation fault diagnosis AFSAELM model
下载PDF
Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens 被引量:1
3
作者 Xue Jiang jiajie he +4 位作者 ChuanXin Zhang HuaLiang Zhao WeiQi Wang DeAn Ta Cheng-Wei Qiu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第2期50-56,共7页
Ultrasound focusing in three-dimensional(3 D)space is of crucial and enduring significance in a variety of biomedical and industrial applications.Conventional ultrasound focusing based on active phase array or passive... Ultrasound focusing in three-dimensional(3 D)space is of crucial and enduring significance in a variety of biomedical and industrial applications.Conventional ultrasound focusing based on active phase array or passive geometry of bulky size is unable to realize the 3 D arbitrary focusing with subwavelength resolution.Acoustic metamaterial of complex deep-subwavelength microstructure has facilitated the advanced airborne-sound-focusing but is inevitably not applicable for underwater ultrasound,restricted by the law between the multi-modes coupling/thermal viscosity and the feature size of the structure.Here,we aim to circumvent the restriction by increasing the feature size of the metamaterial while keeping the compact overall geometry,and realize the robust subwavelength ultrasound focusing with the sparse metalens of the wavelength-scale meta-atom.We theoretically propose and demonstrate numerically and experimentally the broadband arbitrary ultrasound focusing in 3 D space.The axial and off-axis ultrasound focusing with the subwavelength resolution(FWHM<0.58λ)are achieved by the spatially sparse and compact metalens within one-octave bandwidth.With advantages of 3 D freewheeling focusing,subwavelength resolution,spatial sparsity,geometric simplicity,and broadband,the sparse metalens would offer more initiatives to advanced researches in ultrasound focusing and empower applications such as precise biomedical imaging and therapy,nondestructive evaluation,integrated and multiplexed ultrasound devices. 展开更多
关键词 broadband ultrasound focusing sparse metalens subwavelength resolution three-dimensional focusing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部