In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-f...In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme.展开更多
Sulfonylureas are widely used oral anti-diabetic drugs.However,its long-term usage effects on patients’lifespan remain controversial,with no reports of influence on animal longevity.Hence,the anti-aging effects of ch...Sulfonylureas are widely used oral anti-diabetic drugs.However,its long-term usage effects on patients’lifespan remain controversial,with no reports of influence on animal longevity.Hence,the anti-aging effects of chlorpropamide along with glimepiride,glibenclamide,and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+(mito K-ATP)channels and mitochondrial complex II.Chlorpropamide delayed aging in Caenorhabditis elegans,human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice.In addition,the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms,which is consistent with the function of its reported targets,mito K-ATP channels.Increased levels of mitochondrial reactive oxygen species(mt ROS)were observed in chlorpropamide-treated worms.Moreover,the lifespan extension by chlorpropamide required complex II and increased mt ROS levels,indicating that chlorpropamide acts on complex II directly or indirectly via mito K-ATP to increase the production of mt ROS as a pro-longevity signal.This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C.elegans.展开更多
基金jointly sponsored by the Shenzhen Science and Technology Innovation Commission (Grant No. KCXFZ20201221173610028)the key program of the National Natural Science Foundation of China (Grant No. 42130605)
文摘In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme.
基金Financial support for this research provided by the National Natural Science Foundation of China(22037002 and 81772689)the Program for Professor of Special Appointment(Eastern Scholar TP2018025,China)at Shanghai Institutions of Higher Learning+2 种基金the Innovative Research Team of High-level Local Universities in Shanghaithe Chinese Special Fund for State Key Laboratory of Bioreactor Engineering(2060204,China)Strains of Caenorhabditis elegans were provided by the CGC,which is funded by NIH Office of Research Infrastructure Programs(P40 OD010440)。
文摘Sulfonylureas are widely used oral anti-diabetic drugs.However,its long-term usage effects on patients’lifespan remain controversial,with no reports of influence on animal longevity.Hence,the anti-aging effects of chlorpropamide along with glimepiride,glibenclamide,and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+(mito K-ATP)channels and mitochondrial complex II.Chlorpropamide delayed aging in Caenorhabditis elegans,human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice.In addition,the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms,which is consistent with the function of its reported targets,mito K-ATP channels.Increased levels of mitochondrial reactive oxygen species(mt ROS)were observed in chlorpropamide-treated worms.Moreover,the lifespan extension by chlorpropamide required complex II and increased mt ROS levels,indicating that chlorpropamide acts on complex II directly or indirectly via mito K-ATP to increase the production of mt ROS as a pro-longevity signal.This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C.elegans.