Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively preserving network structures.These representations can be used as features for many complex tasks on networks...Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively preserving network structures.These representations can be used as features for many complex tasks on networks such as community detection and multi-label classification.Some classic methods based on the skip-gram model have been proposed to learn the representation of vertexes.However,these methods do not consider the global structure(i.e.,community structure)while sampling vertex sequences in network.To solve this problem,we suggest a novel sampling method which takes community information into consideration.It first samples dense vertex sequences by taking advantage of modularity function and then learns vertex representation by using the skip-gram model.Experimental results on the tasks of community detection and multi-label classification show that our method outperforms three state-of-the-art methods on learning the vertex representations in networks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61673085)the Program from the Sichuan Provincial Science and Technology,China(Grant No.2018RZ0081)the Fundamental Research Funds of China West Normal University(Grant No.17E063)。
文摘Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively preserving network structures.These representations can be used as features for many complex tasks on networks such as community detection and multi-label classification.Some classic methods based on the skip-gram model have been proposed to learn the representation of vertexes.However,these methods do not consider the global structure(i.e.,community structure)while sampling vertex sequences in network.To solve this problem,we suggest a novel sampling method which takes community information into consideration.It first samples dense vertex sequences by taking advantage of modularity function and then learns vertex representation by using the skip-gram model.Experimental results on the tasks of community detection and multi-label classification show that our method outperforms three state-of-the-art methods on learning the vertex representations in networks.