期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modularity-based representation learning for networks
1
作者 jialin he Dongmei Li Yuexi Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期583-589,共7页
Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively preserving network structures.These representations can be used as features for many complex tasks on networks... Network embedding aims at learning low-dimensional representation of vertexes in a network and effectively preserving network structures.These representations can be used as features for many complex tasks on networks such as community detection and multi-label classification.Some classic methods based on the skip-gram model have been proposed to learn the representation of vertexes.However,these methods do not consider the global structure(i.e.,community structure)while sampling vertex sequences in network.To solve this problem,we suggest a novel sampling method which takes community information into consideration.It first samples dense vertex sequences by taking advantage of modularity function and then learns vertex representation by using the skip-gram model.Experimental results on the tasks of community detection and multi-label classification show that our method outperforms three state-of-the-art methods on learning the vertex representations in networks. 展开更多
关键词 network embedding low-dimensional representation vertex sequences community detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部