A new strategy for the preparation of highly efficient catalyst used in oxygen evolution reaction (OER) in alkaline media was developed. A Co-containing carbonitride polymer network (CoCN) was selected as a struct...A new strategy for the preparation of highly efficient catalyst used in oxygen evolution reaction (OER) in alkaline media was developed. A Co-containing carbonitride polymer network (CoCN) was selected as a structural-direct- ing template and a hypercross-linked polymer containing S and P, which formed on CoCN skeleton in situ, was used as a cover. After calcination at 450℃ for 2 h, an interconnected nanostructure was obtained and showed excellent activity and high stability for electrochemical water splitting. Trace amount of Co and other heteroatoms including N, S, P and the formed Co-N and Co-O species are essential for the im- pressive catalysis performance. The calcination temperature of 450℃ is optimal to the catalysis performance. These results suggest that Co in addition to heteroatom-doped (S, P) car- bonitride could be used as a supplement and/or an alternative to noble metal oxides for water splitting.展开更多
基金financially supported by the National Natural Science Foundation of China (21603243, 21402215 and 61474124)the Natural Science Foundation of Gansu Province (1606RJZA112)the Natural science research project of Education Department of Shaanxi Province (17JK0093)
文摘A new strategy for the preparation of highly efficient catalyst used in oxygen evolution reaction (OER) in alkaline media was developed. A Co-containing carbonitride polymer network (CoCN) was selected as a structural-direct- ing template and a hypercross-linked polymer containing S and P, which formed on CoCN skeleton in situ, was used as a cover. After calcination at 450℃ for 2 h, an interconnected nanostructure was obtained and showed excellent activity and high stability for electrochemical water splitting. Trace amount of Co and other heteroatoms including N, S, P and the formed Co-N and Co-O species are essential for the im- pressive catalysis performance. The calcination temperature of 450℃ is optimal to the catalysis performance. These results suggest that Co in addition to heteroatom-doped (S, P) car- bonitride could be used as a supplement and/or an alternative to noble metal oxides for water splitting.