In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and ...In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.展开更多
Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/phys...Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features.However,the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions.Herein,we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process.The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups(reached 18.81 wt%)within the carbon matrix.Depending on the different activating temperatures(from 700 to 800℃)and KOH/biomass mass ratios(from 0.3 to 1),the 750℃ and 0.5 mass ratio were found to be enabling the highest CO_(2) capture performance.The optimal adsorbent was achieved a high CO_(2) uptake capacity of 5.92 and 4.15 mmol·g^(−1) at 0 and 25℃(1 bar),respectively.More importantly,as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO_(2)/N_(2) selectivity.The results were revealed not only the textural feature but also the surface functional groups critically determine the CO_(2) capture performance,indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO_(2) capture.展开更多
With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of ce...With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of cell lines and animals.In this study,we report the biological effects of C60 on finishing pigs at different concentrations.A total of 24 barrows(Duroc×Large White×Landrace),with an average body weight of 21.01±0.98 kg,were divided into 3 groups and each treated daily with C60(100 or 200 mg per kg feed)or a control diet until the end of the experiment.Our results showed that dietary C60 supplementation improved flesh color,marbling scores,and flavor amino acid contents of longissimus dorsi(LD)of growing-finishing pigs(P<0.05).C60 improved meat quality by regulating lipid metabolism and muscle fiber morphology by mediating the expression of genes,L-lactic dehydrogenase(LDH),myosin heavy chain(MyHC)IIa,MyHCIIb,peroxisome proliferator-activated receptor γ(PPARγ),and fatty acid transport protein 1(FATP1)(P<0.05).Moreover,C60 substantially promoted the mRNA expression of antioxidant enzyme genes(P<0.05),which also contributed to improving meat quality.These findings have important implications for the application of C60 in the livestock industry,especially for improving the meat quality of fattening pigs.展开更多
基金The National Key Research and Development Program of China under contract No.2019YFA0606702the SOA Global Change and Air-Sea Interaction Project under contract No.GASI-IPOVAI-01-04the National Natural Science Foundation of China under contract Nos 41776003,91858202 and 41630963。
文摘In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.
基金Financial support was provided by Zhejiang Provincial Natural Science Foundation(Grant No.LY21B070005)National Undergraduate Training Program for Innovation and Entrepreneurship of China and Self designed scientific research project of Zhejiang Normal University(Grant No.2021ZS06)。
文摘Biomass-derived porous carbons have been considered as the most potential candidate for effective CO_(2) adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features.However,the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions.Herein,we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process.The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups(reached 18.81 wt%)within the carbon matrix.Depending on the different activating temperatures(from 700 to 800℃)and KOH/biomass mass ratios(from 0.3 to 1),the 750℃ and 0.5 mass ratio were found to be enabling the highest CO_(2) capture performance.The optimal adsorbent was achieved a high CO_(2) uptake capacity of 5.92 and 4.15 mmol·g^(−1) at 0 and 25℃(1 bar),respectively.More importantly,as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO_(2)/N_(2) selectivity.The results were revealed not only the textural feature but also the surface functional groups critically determine the CO_(2) capture performance,indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO_(2) capture.
基金the Innovation Team of Key areas of the Ministry of Science and Technology,Science and Technology Leadership Program of Hunan Province(2019RS3020)Special Fund for Key Program of Science and Technology of Yunnan Province(202102AE090046)。
文摘With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of cell lines and animals.In this study,we report the biological effects of C60 on finishing pigs at different concentrations.A total of 24 barrows(Duroc×Large White×Landrace),with an average body weight of 21.01±0.98 kg,were divided into 3 groups and each treated daily with C60(100 or 200 mg per kg feed)or a control diet until the end of the experiment.Our results showed that dietary C60 supplementation improved flesh color,marbling scores,and flavor amino acid contents of longissimus dorsi(LD)of growing-finishing pigs(P<0.05).C60 improved meat quality by regulating lipid metabolism and muscle fiber morphology by mediating the expression of genes,L-lactic dehydrogenase(LDH),myosin heavy chain(MyHC)IIa,MyHCIIb,peroxisome proliferator-activated receptor γ(PPARγ),and fatty acid transport protein 1(FATP1)(P<0.05).Moreover,C60 substantially promoted the mRNA expression of antioxidant enzyme genes(P<0.05),which also contributed to improving meat quality.These findings have important implications for the application of C60 in the livestock industry,especially for improving the meat quality of fattening pigs.