期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nano-single-crystal-constructed submicron MnCO_(3) hollow spindles enabled by solid precursor transition combined Ostwald ripening in situ on graphene toward exceptional interfacial and capacitive lithium storage 被引量:2
1
作者 jiamin fei Shiqiang Zhao +6 位作者 Xiaoxu Bo Furong Xie Guanghui Li Ebrahim-Alkhalil MAAhmed Qingcheng Zhang Huile Jin Zhiqun Lin 《Carbon Energy》 SCIE CSCD 2023年第8期98-113,共16页
Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ar... Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ardent pursuing on the synthetic approaches of hollow materials.Herein,an intriguing route,combining solid precursor transition and Ostwald ripening(SPTOR),is developed to craft nano single-crystal(SC)-constructed MnCO_(3) submicron hollow spindles homogeneously encapsulated in a reduced graphene oxide matrix(MnCO_(3) SMHSs/rGO).It is noteworthy that the H-bonding interaction between Mn_(3)O_(4) nanoparticles(NPs)and oxygen-containing groups on GO promotes uniform anchoring of Mn_(3)O_(4) NPs on GO,mild reductant ascorbic acid triggers the progressive solid-to-solid transition from Mn_(3)O_(4) NPs to MnCO_(3) submicron solid spindles(SMSSs)in situ on GO,and the Ostwald ripening process induces the gradual dissolution of interior polycrystals of MnCO_(3) SMSSs and subsequent recrystallization on surface SCs of MnCO_(3) SMHSs.Remarkably,MnCO_(3) SMHSs/rGO delivers a 500th lithium storage capacity of 2023 mAh g^(-1) at 1000 mAg^(-1),which is 10 times higher than that of MnCO_(3) microspheres/rGO fabricated from a conventional Mn^(2+)salt precursor(202 mAh g^(-1)).The ultrahigh capacity and ultralong lifespan of MnCO_(3) SMHSs/rGO can be primarily attributed to the superior reaction kinetics and reversibility combined with exceptional interfacial and capacitive lithium storage capability,enabled by the fast ion/electron transfer,large specific surface area,and robust electrode pulverization inhibition efficacy.Moreover,fascinating in-depth lithium storage reactions of MnCO_(3) are observed such as the oxidation of Mn^(2+)in MnCO_(3) to Mn^(3+)in charge process after long-term cycles and the further lithiation of Li_(2)CO_(3) in discharge process.As such,the Carbon Energy.SPTOR approach may represent a viable strategy for crafting various hollow functional materials with metastable nanomaterials as precursors. 展开更多
关键词 hollow structure interfacial and capacitive lithium storage lithium-ion battery MnCO_(3) Ostwald ripening solid precursor transition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部