Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors ...Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes,environmental toxicity,high production costs of traditional 3D semiconductor materials and sharply raised contact resistance,severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction.Here,1D p-Te/2D n-Bi_(2)Te_(3) heterojunctions are constructed by the simple and low-cost hydrothermal method.1D p-Te/2D n-Bi_(2)Te_(3) devices are applied in photoelectrochemical(PEC)photodetectors,with their high performance attributed to the good interfacial contacts reducing interface recombination.The device demonstrated a broad wavelength range(365–850 nm)with an Iph/Idark as high as 377.45.The R_(i),D^(*),and external quantum efficiency(EQE)values of the device were as high as 12.07 mA/W,5.87×10^(10) Jones,and 41.05%,respectively,which were significantly better than the performance of the prepared Bi_(2)Te_(3) and Te devices.A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi_(2)Te_(3) had excellent stability with only 18.08%decay of photocurrent.It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.展开更多
Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors...Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1 T-2 H phase molybdenum disulfide(Mo S_(2))/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0705201)the National Natural Science Foundation of China(No.U2032129).
文摘Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain.However,high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes,environmental toxicity,high production costs of traditional 3D semiconductor materials and sharply raised contact resistance,severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction.Here,1D p-Te/2D n-Bi_(2)Te_(3) heterojunctions are constructed by the simple and low-cost hydrothermal method.1D p-Te/2D n-Bi_(2)Te_(3) devices are applied in photoelectrochemical(PEC)photodetectors,with their high performance attributed to the good interfacial contacts reducing interface recombination.The device demonstrated a broad wavelength range(365–850 nm)with an Iph/Idark as high as 377.45.The R_(i),D^(*),and external quantum efficiency(EQE)values of the device were as high as 12.07 mA/W,5.87×10^(10) Jones,and 41.05%,respectively,which were significantly better than the performance of the prepared Bi_(2)Te_(3) and Te devices.A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi_(2)Te_(3) had excellent stability with only 18.08%decay of photocurrent.It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.
基金supported by the National Natural Science Foundation of China(No.62004051)the Natural Science Foundation of Heilongjiang province(No.LH2020F013)+1 种基金the China Postdoctoral Science Fund(No.2020M670909)the Heilongjiang Postdoctoral Science Fund(No.LBH-Z19017)。
文摘Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1 T-2 H phase molybdenum disulfide(Mo S_(2))/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development.