Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows...Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration.展开更多
Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Walleria...Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019.展开更多
A polymer waveguide thermo-optical switch with loss compensation based on NaYF_4: 18% Yb^(3+), 2% Er^(3+)nanocrystals, fabricated by traditional semiconductor processes, has been investigated. NaYF4: 18% Yb^(...A polymer waveguide thermo-optical switch with loss compensation based on NaYF_4: 18% Yb^(3+), 2% Er^(3+)nanocrystals, fabricated by traditional semiconductor processes, has been investigated. NaYF4: 18% Yb^(3+), 2% Er^(3+)nanocrystals were prepared by a pyrolysis method. The morphology and luminescent properties of the nanocrystals were characterized.The nanocrystals were doped into SU-8 as the core material of an optical waveguide amplifier. The size of the device was optimized for its optical and thermal fields as well as its transmission characteristics. The device was fabricated on a silica substrate by spin coating, photolithography, and wet etching. The insertion loss of the switch device is~15 dB. The rise and fall times of the device are 240 μs and 380 μs, respectively, as measured by application of a 304 Hz square wave voltage. The extinction ratio of the device is about 14 dB at an electrode-driving power of 7 mW. When the pump light power is 230 mW and the signal light power is 0.1 mW, the loss compensation of the device is 3.8 dB at a wavelength of1530 nm. Optical devices with loss compensation have important research significance.展开更多
Micro(nano)plastics(MNPs)are a growing problem as persistent environmental pollutants.Here,we investigated the impact of MNPs on microorganisms in aquatic microbial floc exposed to NPs(80 nm)and MPs(8μm)for 35 days.W...Micro(nano)plastics(MNPs)are a growing problem as persistent environmental pollutants.Here,we investigated the impact of MNPs on microorganisms in aquatic microbial floc exposed to NPs(80 nm)and MPs(8μm)for 35 days.Water quality indicators were tested weekly and microbiological analyses were conducted on Day 7 and 28 after exposure.The results showed that there were significant differences in the levels of total ammonia nitrogen or nitrite between the MNPs groups and the control group,spanning from Day 7 to Day 28.For the microbial response,microbial community richness in the NPs and MPs groups were significantly increased at Day 7.Functional prediction showed that the relative abundances of bacteria associated with the“Forms Biofilms”,“Potentially Pathogenic”,“Plastic Degradation”and nitrogen cycle processes were significantly different after MNPs exposure.The results suggest that MNPs had no significant effect on the microbial diversity of mature microbial flocs.Findings suggest MPs could cause an increase in the relative abundance of potentially pathogenic bacteria,while NPs do not.In addition,stress associated with MNPs affected the nitrogen cycle of microorganisms,and NPs exerted greater impacts than MPs.Findings from this study further our understanding of the impact of MNPs at environmentally relevant concentrations on microorganisms in aquatic ecosystems.展开更多
Together with the big data movement, many organizations collect their own big data and build distinctive applications. In order to provide smart services upon big data, massive variable data should be well linked and ...Together with the big data movement, many organizations collect their own big data and build distinctive applications. In order to provide smart services upon big data, massive variable data should be well linked and organized to form Data Ocean, which specially emphasizes the deep exploration of the relationships among unstructured data to support smart services. Currently, almost all of these applications have to deal with unstructured data by integrating various analysis and search techniques upon massive storage and processing infrastructure at the application level, which greatly increase the difficulty and cost of application development. This paper presents D-Ocean, an unstructured data management system for data ocean environment. D-Ocean has an open and scalable architecture, which consists of a core platform, pluggable components and auxiliary tools. It exploits a unified storage framework to store data in different kinds of data stores, integrates batch and incremental processing mechanisms to process unstructured data, and provides a combined search engine to conduct compound queries. Furthermore, a so-called RAISE process modeling is proposed to support the whole process of Repository, Analysis, Index, Search and Environment modeling, which can greatly simplify application development. The experiments and use cases in production demonstrate the efficiency and usability of D-Ocean.展开更多
Profile requirements of silicon steel strip are extremely high and the thickness difference of cold-rolled products is usually less than 7μm,and the profile quality of hot-rolled strip is the key to ensure the thickn...Profile requirements of silicon steel strip are extremely high and the thickness difference of cold-rolled products is usually less than 7μm,and the profile quality of hot-rolled strip is the key to ensure the thickness difference of cold-rolled products.In order to produce the silicon steel strip with high-precision shape,the concept of quasi-rectangular rolling during hot continuous rolling was put forward;the equipment configuration and technical method of approximate rectangular section control were studied.Through the roughing multi-target load distribution technology and the roll configuration technology for uniform wear of a 4-high rolling mill,the strip crown of transfer bar was reduced and the profile control stability was guaranteed.Configuring variable contact back-up roll technology on all stands in the finishing rolling process,equipped with symmetry variable taper work roll and long-stroke intelligent shifting strategy in the downstream stands,and using side rolling lubrication technology can make the roll wear more uniform,reduce the edge drop of silicon steel strip,improve the profile quality,and make the strip section of finishing exit"quasi-rectangular".In addition,induction furnace and side heater were also equipped to guarantee the temperature uniformity of the strip,so as to improve the stability of profile control.The whole control technology is based on the 1580-mm hot continuous rolling production line,designed,and developed according to the characteristics of equipment and products,and has been successfully applied,which can obtain the approximate rectangular strip section satisfying the flatness quality,and improve the strip section precision of silicon steel and other products.展开更多
The hot rolling and cold rolling control models of silicon steel strip were examined.Shape control of silicon steel strip of hot rolling was a theoretical analysis model,and the shape control of cold rolling was a dat...The hot rolling and cold rolling control models of silicon steel strip were examined.Shape control of silicon steel strip of hot rolling was a theoretical analysis model,and the shape control of cold rolling was a data-based prediction model.The mathematical model of the hot-rolled silicon steel section,including the crown genetic model,inter-stand crown recovery model,and hot-rolled strip section prediction model,is used to control the shape of hot-rolled strip.The cold rolling shape control is mainly based on Takagi-Sugeno fuzzy network,which is used to simulate and predict the transverse thickness difference of cold-rolled silicon steel strip.Finally,a predictive model for the transverse thickness difference of silicon steel strips is developed to provide a new quality control method of transverse thickness of combined hot and cold rolling to improve the strip profile quality and increase economic efficiency.The qualified rate of the non-oriented silicon steel strip is finally obtained by applying this model,and it has been steadily upgraded to meet the needs of product quality and flexible production.展开更多
Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder,alter protein expression,and then induce pathological changes in zebrafish embryos,despite negligible physiological and developmental ...Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder,alter protein expression,and then induce pathological changes in zebrafish embryos,despite negligible physiological and developmental toxicity.This study investigated the single and combined developmental toxicity of fluoroquinolones(enrofloxacin[ENR]and ciprofloxacin[CIP])(0.5 mM)and heavy metals(Cu and Cd)(0.5 mM)to zebrafish embryos,and molecular responses of zebrafish larvae upon exposure to the single pollutant(0.2 mM)or a binary metal-fluoroquinolone mixture(0.2 mM).In all single and mixture exposure groups,no developmental toxicity was observed,but oxidative stress,inflammation,and lipid depletion were found in zebrafish embryos,which was more severe in the mixture exposure groups than in the single exposure groups,probably due to increased metal bioaccumulation in the presence of ENR or CIP.Metabolomics analysis revealed the up-regulation of amino acids and down-regulation of fatty acids,corresponding to an active response to oxidative stress and the occurrence of inflammation.The up-regulation of antioxidase and immune proteins revealed by proteomics analysis further confirmed the occurrence of oxidative stress and inflammation.Furthermore,the KEGG pathway enrichment analysis showed a significant disturbance of pathways related to immunity and tumor,indicating the potential risk of tumorigenesis in zebrafish larvae.The findings provide molecular-level insights into the adverse effects of heavy metals and antibiotics(especially in chemical mixtures)on zebrafish embryos,and highlight the potential ecotoxicological risks of trace-level heavy metals and antibiotics in the environment.展开更多
Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is uncle...Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is unclear,especially the early response.We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactionsin vivo andin vitro.Methods:Using the methods of molecular biology and bioinformatics analysis,we investigated the molecular mechanism by which claudin 14/15 participate in WD.Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves.Here,we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD.Results:It was found that claudin 14/15 were upregulated in the sciatic nerve in WD.Claudin 14/15 promoted Schwann cell proliferation,migration and anti-apoptosisin vitro.PKCα,NT3,NF2,and bFGF were significantly upregulated in transfected Schwann cells.Moreover,the expression levels of theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK signaling pathways were also significantly altered.Conclusion:Claudin 14/15 affect Schwann cell proliferation,migration,and anti-apoptosis via theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK pathwaysin vitro andin vivo.The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.展开更多
To reveal the generation mechanism of the quarter buckle in the process of hot-rolled temper rolling,the elastic–plastic finite element method is used to calculate the deformation of the roll and the strip during the...To reveal the generation mechanism of the quarter buckle in the process of hot-rolled temper rolling,the elastic–plastic finite element method is used to calculate the deformation of the roll and the strip during the temper rolling.The change of the cross section of the strip and the distribution of the longitudinal stress are analysed under different bending forces to obtain the boundary conditions of the quarter buckle.The generation of the quarter buckle is further analysed from the bending and contact flattening of the roll system and the elastic recovery of the strip after rolling.We found that the quarter buckle is closely related to the high-order distribution of the contact flattening between the work roll and the strip and is less affected by the bending deformation of the roll and the contact flattening between the rolls.Finally,a new work roll contour of the locally variable crown is proposed to change the distribution of contact flattening between the work roll and the strip.It is verified through theoretical calculations and industrial applications that the new contour can effectively improve the quarter buckle.展开更多
With the increasing demand on higher strip quality, the profile and flatness of hot rolling strips have become subjects of concern, particularly for compact strip product(CSP) hot strip mills. Based on the roll contou...With the increasing demand on higher strip quality, the profile and flatness of hot rolling strips have become subjects of concern, particularly for compact strip product(CSP) hot strip mills. Based on the roll contour, control model, and rolling process, a comprehensive shape control technology is proposed and applied to CSP hot strip mill of Lianyuan steel, which includes optimization and design of the work roll contour and varying contact back-up roll(VCR) plus backup roll contour, analysis of the flatness feedback control model, as well as improvement of the rolling process control system. The application of the technology has significantly improved the shape control performance. The roll wear is improved and the general roll consumption of the finishing mill is reduced by 29.86%.The percentages that satisfy the control target ranges of the average strip flatness and crown are increased by approximately 15.40%and 14.82%, respectively. The rejection rate of grade Q235 due to shape quality problem is reduced monthly by 39.69%, which creates significant economic benefits for the plant.展开更多
Molecular rotors with controllable functions are promising for molecular machines and electronic devices.Especially,fast rotation in molecular rotor enables switchable molecular conformations and charge transport stat...Molecular rotors with controllable functions are promising for molecular machines and electronic devices.Especially,fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications.However,the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability.Fast rotation in molecular rotor requires a small energy barrier height,which disables its controllability under thermal excitation at room temperature.展开更多
Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security.Many city crimes are observed in surveillance video.The most abundant evidence collected by...Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security.Many city crimes are observed in surveillance video.The most abundant evidence collected by the police is also acquired through surveillance video sources.Surveillance video footage offers very strong support for solving criminal cases,therefore,creating an effective policy and applying useful methods to the retrieval of additional evidence is becoming increasingly important.However,surveillance video has had its failings,namely,video footage being captured in low resolution(LR)and bad visual quality.In this paper,we discuss the characteristics of surveillance video and describe the manual feature registration-maximum a posteriori-projection onto convex sets to develop a super-resolution reconstruction method,which improves the quality of surveillance video.From this method,we can make optimal use of information contained in the LR video image,but we can also control the image edge clearly as well as the convergence of the algorithm.Finally,we make a suggestion on how to adjust the algorithm adaptability by analyzing the prior information of target image.展开更多
Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can dis...Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can disintegrate and/or degrade into eco-friendly end products in a controlled way.Natural polymers possess cost and energy efficiency,easy modification,and fast degradation,all of which are ideal prop-erties for transient electronics.Gelatin is especially attractive due to its unique thermoreversible gelation processes,yet its huge potential as a multifunctional electronic material has not been well-researched due to its limited mechanical strength and low conductivity.Herein,we explored versatile applications of gelatin-based hydrogels through the assistance of multifunctional additives like carbon nanotubes to enhance their electromechanical performances.The optimized gelatin hydrogel displays not only a high conductivity of 0.93 S/m,electromagnetic shielding effectiveness of 39.6 dB,and tensile stress tolerance of 263 kPa,but also shows a negative permittivity phenomenon,which may find versatile applications in novel electronics.As a proof of concept,hydrogels were assembled as wearable sensors to sensitively de-tect static and dynamic pressures and strains generated by solids,liquids,and airflow,as well as diverse body movements.Furthermore,the recyclability,biocompatibility,and degradability of gelatin-based hy-drogels were well studied and analyzed.This work outlines a facile method to design multifunctional transient materials for wearable,sustainable,and eco-friendly electronics.展开更多
Background:Chronic diseases are becoming a critical challenge to the aging Chinese population.Biobanks with extensive genomic and environmental data offer opportunities to elucidate the complex gene-environment intera...Background:Chronic diseases are becoming a critical challenge to the aging Chinese population.Biobanks with extensive genomic and environmental data offer opportunities to elucidate the complex gene-environment interactions underlying their aetiology.Genome-wide genotyping array remains an efficient approach for large-scale genomic data collection.However,most commercial arrays have reduced performance for biobanking in the Chinese population.Materials and methods:Deep whole-genome sequencing data from 2641 Chinese individuals were used as a reference to develop the CAS array,a custom-designed genotyping array for precision medicine.Evaluation of the array was performed by comparing data from 384 individuals assayed both by the array and whole-genome sequencing.Validation of its mitochondrial copy number estimating capacity was conducted by examining its association with established covariates among 10162 Chinese elderly.Results:The CAS Array adopts the proven Axiom technology and is restricted to 652429 single-nucleotide polymorphism(SNP)markers.Its call rate of 99.79% and concordance rate of 99.89% are both higher than for commercial arrays.Its imputation-based genome coverage reached 98.3% for common SNPs and 63.0% for low-frequency SNPs,both comparable to commercial arrays with larger SNP capacity.After validating its mitochondrial copy number estimates,we developed a publicly available software tool to facilitate the array utility.Conclusion:Based on recent advances in genomic science,we designed and implemented a high-throughput and low-cost genotyping array.It is more cost-effective than commercial arrays for large-scale Chinese biobanking.展开更多
The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and ...The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes.展开更多
Precise control from the bottom-up for realizing tunable functionality is of utmost importance to facilitate the development of molecular electronic devices.Until now,however,manipulating charge carriers over single-m...Precise control from the bottom-up for realizing tunable functionality is of utmost importance to facilitate the development of molecular electronic devices.Until now,however,manipulating charge carriers over single-molecule scale remains intractable.The origin of the problem is that the nature of charge carriers is often hindered by the complexity of the investigated molecular systems.Here,via ab initio simulations,we show a force-modulated and switched ambipolar single-molecule junction with Au/cyclopropane-1,2-dithiol/Au structure.The cyclopropane ring in the molecule can be opened and closed reversibly and repeatedly by the mechanical force.This structural transition from its closed state to open state enables the ambipolarity in charge carriers—from p-type to n-type.Analysis of electronic structure reveals unambiguously the force-dependent correlation between C–S bond order and the nature of charge carriers.Based on this,we design a binary interconnected junction exhibiting resistance,rectification and negative differential resistance functionalities under mechanical modulation,i.e.,loading/unloading or pull/push.This interesting phenomenon provides both illuminating insight and feasible controllability into charge carriers in molecules,and a very general idea and useful approach for single-molecule junctions in practical single-molecule devices.展开更多
基金supported by the National Natural Science Foundation of China,Nos.31971277(to DBY),31950410551(to DBY)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(to DBY)+2 种基金a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to DBY)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX 19-2050(to JS)Jiangsu College Students’Innovation and Entrepreneurship Training Program,No.202213993005Y(to YY)。
文摘Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration.
基金supported by the National Natural Science Foundation of China,Nos.31971277,31950410551Scientific Research Foundation for Returned Scholars+2 种基金Ministry of Education of ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX 19-2050(all to DBY)。
文摘Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475061 and 61575076)
文摘A polymer waveguide thermo-optical switch with loss compensation based on NaYF_4: 18% Yb^(3+), 2% Er^(3+)nanocrystals, fabricated by traditional semiconductor processes, has been investigated. NaYF4: 18% Yb^(3+), 2% Er^(3+)nanocrystals were prepared by a pyrolysis method. The morphology and luminescent properties of the nanocrystals were characterized.The nanocrystals were doped into SU-8 as the core material of an optical waveguide amplifier. The size of the device was optimized for its optical and thermal fields as well as its transmission characteristics. The device was fabricated on a silica substrate by spin coating, photolithography, and wet etching. The insertion loss of the switch device is~15 dB. The rise and fall times of the device are 240 μs and 380 μs, respectively, as measured by application of a 304 Hz square wave voltage. The extinction ratio of the device is about 14 dB at an electrode-driving power of 7 mW. When the pump light power is 230 mW and the signal light power is 0.1 mW, the loss compensation of the device is 3.8 dB at a wavelength of1530 nm. Optical devices with loss compensation have important research significance.
基金the Science and Technology Project of Guizhou Province,China([2020]4Y027)the National Natural Science Foundation of China(32002392)the Program Foundation for Talents of Guizhou University(No.[2021]15 and No.[2021]65).
文摘Micro(nano)plastics(MNPs)are a growing problem as persistent environmental pollutants.Here,we investigated the impact of MNPs on microorganisms in aquatic microbial floc exposed to NPs(80 nm)and MPs(8μm)for 35 days.Water quality indicators were tested weekly and microbiological analyses were conducted on Day 7 and 28 after exposure.The results showed that there were significant differences in the levels of total ammonia nitrogen or nitrite between the MNPs groups and the control group,spanning from Day 7 to Day 28.For the microbial response,microbial community richness in the NPs and MPs groups were significantly increased at Day 7.Functional prediction showed that the relative abundances of bacteria associated with the“Forms Biofilms”,“Potentially Pathogenic”,“Plastic Degradation”and nitrogen cycle processes were significantly different after MNPs exposure.The results suggest that MNPs had no significant effect on the microbial diversity of mature microbial flocs.Findings suggest MPs could cause an increase in the relative abundance of potentially pathogenic bacteria,while NPs do not.In addition,stress associated with MNPs affected the nitrogen cycle of microorganisms,and NPs exerted greater impacts than MPs.Findings from this study further our understanding of the impact of MNPs at environmentally relevant concentrations on microorganisms in aquatic ecosystems.
文摘Together with the big data movement, many organizations collect their own big data and build distinctive applications. In order to provide smart services upon big data, massive variable data should be well linked and organized to form Data Ocean, which specially emphasizes the deep exploration of the relationships among unstructured data to support smart services. Currently, almost all of these applications have to deal with unstructured data by integrating various analysis and search techniques upon massive storage and processing infrastructure at the application level, which greatly increase the difficulty and cost of application development. This paper presents D-Ocean, an unstructured data management system for data ocean environment. D-Ocean has an open and scalable architecture, which consists of a core platform, pluggable components and auxiliary tools. It exploits a unified storage framework to store data in different kinds of data stores, integrates batch and incremental processing mechanisms to process unstructured data, and provides a combined search engine to conduct compound queries. Furthermore, a so-called RAISE process modeling is proposed to support the whole process of Repository, Analysis, Index, Search and Environment modeling, which can greatly simplify application development. The experiments and use cases in production demonstrate the efficiency and usability of D-Ocean.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51975043)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-002A3)Beijing Natural Science Foundation(3182026)for the support to this research.
文摘Profile requirements of silicon steel strip are extremely high and the thickness difference of cold-rolled products is usually less than 7μm,and the profile quality of hot-rolled strip is the key to ensure the thickness difference of cold-rolled products.In order to produce the silicon steel strip with high-precision shape,the concept of quasi-rectangular rolling during hot continuous rolling was put forward;the equipment configuration and technical method of approximate rectangular section control were studied.Through the roughing multi-target load distribution technology and the roll configuration technology for uniform wear of a 4-high rolling mill,the strip crown of transfer bar was reduced and the profile control stability was guaranteed.Configuring variable contact back-up roll technology on all stands in the finishing rolling process,equipped with symmetry variable taper work roll and long-stroke intelligent shifting strategy in the downstream stands,and using side rolling lubrication technology can make the roll wear more uniform,reduce the edge drop of silicon steel strip,improve the profile quality,and make the strip section of finishing exit"quasi-rectangular".In addition,induction furnace and side heater were also equipped to guarantee the temperature uniformity of the strip,so as to improve the stability of profile control.The whole control technology is based on the 1580-mm hot continuous rolling production line,designed,and developed according to the characteristics of equipment and products,and has been successfully applied,which can obtain the approximate rectangular strip section satisfying the flatness quality,and improve the strip section precision of silicon steel and other products.
基金supported by the National Key Research and Development Plan of China(No.2020YFB1713600)the National Natural Science Foundation of China(No.51975043)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-19-002A3 and FRF-TP-20-105A1)the China Postdoctoral Science Foundation(No.2021M690352).
文摘The hot rolling and cold rolling control models of silicon steel strip were examined.Shape control of silicon steel strip of hot rolling was a theoretical analysis model,and the shape control of cold rolling was a data-based prediction model.The mathematical model of the hot-rolled silicon steel section,including the crown genetic model,inter-stand crown recovery model,and hot-rolled strip section prediction model,is used to control the shape of hot-rolled strip.The cold rolling shape control is mainly based on Takagi-Sugeno fuzzy network,which is used to simulate and predict the transverse thickness difference of cold-rolled silicon steel strip.Finally,a predictive model for the transverse thickness difference of silicon steel strips is developed to provide a new quality control method of transverse thickness of combined hot and cold rolling to improve the strip profile quality and increase economic efficiency.The qualified rate of the non-oriented silicon steel strip is finally obtained by applying this model,and it has been steadily upgraded to meet the needs of product quality and flexible production.
基金the National Natural Science Foundation of China(Grant No.51925901 and 51879001).
文摘Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder,alter protein expression,and then induce pathological changes in zebrafish embryos,despite negligible physiological and developmental toxicity.This study investigated the single and combined developmental toxicity of fluoroquinolones(enrofloxacin[ENR]and ciprofloxacin[CIP])(0.5 mM)and heavy metals(Cu and Cd)(0.5 mM)to zebrafish embryos,and molecular responses of zebrafish larvae upon exposure to the single pollutant(0.2 mM)or a binary metal-fluoroquinolone mixture(0.2 mM).In all single and mixture exposure groups,no developmental toxicity was observed,but oxidative stress,inflammation,and lipid depletion were found in zebrafish embryos,which was more severe in the mixture exposure groups than in the single exposure groups,probably due to increased metal bioaccumulation in the presence of ENR or CIP.Metabolomics analysis revealed the up-regulation of amino acids and down-regulation of fatty acids,corresponding to an active response to oxidative stress and the occurrence of inflammation.The up-regulation of antioxidase and immune proteins revealed by proteomics analysis further confirmed the occurrence of oxidative stress and inflammation.Furthermore,the KEGG pathway enrichment analysis showed a significant disturbance of pathways related to immunity and tumor,indicating the potential risk of tumorigenesis in zebrafish larvae.The findings provide molecular-level insights into the adverse effects of heavy metals and antibiotics(especially in chemical mixtures)on zebrafish embryos,and highlight the potential ecotoxicological risks of trace-level heavy metals and antibiotics in the environment.
基金supported by grants from the National Natural Science Foundation of China(No.31971277 and 31950410551)Scientific Research Foundation for Returned Scholars of the Ministry of Education of China,a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX 19-2050)。
文摘Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is unclear,especially the early response.We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactionsin vivo andin vitro.Methods:Using the methods of molecular biology and bioinformatics analysis,we investigated the molecular mechanism by which claudin 14/15 participate in WD.Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves.Here,we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD.Results:It was found that claudin 14/15 were upregulated in the sciatic nerve in WD.Claudin 14/15 promoted Schwann cell proliferation,migration and anti-apoptosisin vitro.PKCα,NT3,NF2,and bFGF were significantly upregulated in transfected Schwann cells.Moreover,the expression levels of theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK signaling pathways were also significantly altered.Conclusion:Claudin 14/15 affect Schwann cell proliferation,migration,and anti-apoptosis via theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK pathwaysin vitro andin vivo.The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.
基金This work was financially supported by the National Natural Science Foundation of China(52004029)the Open Foundation of Engineering Research Centre for Metallurgical Automation and Measurement Technology of Ministry of Education(MADTOF-2019A01)the Postdoctoral Science Foundation of China(2021M690352).
文摘To reveal the generation mechanism of the quarter buckle in the process of hot-rolled temper rolling,the elastic–plastic finite element method is used to calculate the deformation of the roll and the strip during the temper rolling.The change of the cross section of the strip and the distribution of the longitudinal stress are analysed under different bending forces to obtain the boundary conditions of the quarter buckle.The generation of the quarter buckle is further analysed from the bending and contact flattening of the roll system and the elastic recovery of the strip after rolling.We found that the quarter buckle is closely related to the high-order distribution of the contact flattening between the work roll and the strip and is less affected by the bending deformation of the roll and the contact flattening between the rolls.Finally,a new work roll contour of the locally variable crown is proposed to change the distribution of contact flattening between the work roll and the strip.It is verified through theoretical calculations and industrial applications that the new contour can effectively improve the quarter buckle.
基金supported by Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-10-0223)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-11-003A)the 2012 National Science and Technology Support Program of China(No.2012BAF09B04)
文摘With the increasing demand on higher strip quality, the profile and flatness of hot rolling strips have become subjects of concern, particularly for compact strip product(CSP) hot strip mills. Based on the roll contour, control model, and rolling process, a comprehensive shape control technology is proposed and applied to CSP hot strip mill of Lianyuan steel, which includes optimization and design of the work roll contour and varying contact back-up roll(VCR) plus backup roll contour, analysis of the flatness feedback control model, as well as improvement of the rolling process control system. The application of the technology has significantly improved the shape control performance. The roll wear is improved and the general roll consumption of the finishing mill is reduced by 29.86%.The percentages that satisfy the control target ranges of the average strip flatness and crown are increased by approximately 15.40%and 14.82%, respectively. The rejection rate of grade Q235 due to shape quality problem is reduced monthly by 39.69%, which creates significant economic benefits for the plant.
基金This study was supported by the National Natural Science Foundation of China(NSFC)(Grants 11972383,11672339 and 81827802)the Guangzhou Science and Technology key Project(Grant 201707020002).
文摘Molecular rotors with controllable functions are promising for molecular machines and electronic devices.Especially,fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications.However,the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability.Fast rotation in molecular rotor requires a small energy barrier height,which disables its controllability under thermal excitation at room temperature.
文摘Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security.Many city crimes are observed in surveillance video.The most abundant evidence collected by the police is also acquired through surveillance video sources.Surveillance video footage offers very strong support for solving criminal cases,therefore,creating an effective policy and applying useful methods to the retrieval of additional evidence is becoming increasingly important.However,surveillance video has had its failings,namely,video footage being captured in low resolution(LR)and bad visual quality.In this paper,we discuss the characteristics of surveillance video and describe the manual feature registration-maximum a posteriori-projection onto convex sets to develop a super-resolution reconstruction method,which improves the quality of surveillance video.From this method,we can make optimal use of information contained in the LR video image,but we can also control the image edge clearly as well as the convergence of the algorithm.Finally,we make a suggestion on how to adjust the algorithm adaptability by analyzing the prior information of target image.
基金This work was financially supported by the National Natural Science Foundation of China(No.52073075)the Shenzhen Science and Technology Program(No.KQTD20170809110344233)the Initial Scientific Research Foundation of Overseas High-level Talents of Harbin Institute of Technology(Shenzhen)(No.DB11409008).
文摘Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can disintegrate and/or degrade into eco-friendly end products in a controlled way.Natural polymers possess cost and energy efficiency,easy modification,and fast degradation,all of which are ideal prop-erties for transient electronics.Gelatin is especially attractive due to its unique thermoreversible gelation processes,yet its huge potential as a multifunctional electronic material has not been well-researched due to its limited mechanical strength and low conductivity.Herein,we explored versatile applications of gelatin-based hydrogels through the assistance of multifunctional additives like carbon nanotubes to enhance their electromechanical performances.The optimized gelatin hydrogel displays not only a high conductivity of 0.93 S/m,electromagnetic shielding effectiveness of 39.6 dB,and tensile stress tolerance of 263 kPa,but also shows a negative permittivity phenomenon,which may find versatile applications in novel electronics.As a proof of concept,hydrogels were assembled as wearable sensors to sensitively de-tect static and dynamic pressures and strains generated by solids,liquids,and airflow,as well as diverse body movements.Furthermore,the recyclability,biocompatibility,and degradability of gelatin-based hy-drogels were well studied and analyzed.This work outlines a facile method to design multifunctional transient materials for wearable,sustainable,and eco-friendly electronics.
基金supported by the National Key R&D Program of China(Grant No.2018YFC2001003)the Strategic Priority Research Program of the Chinese Academy of Sciences(category B,Grant No.XDB38020100).
文摘Background:Chronic diseases are becoming a critical challenge to the aging Chinese population.Biobanks with extensive genomic and environmental data offer opportunities to elucidate the complex gene-environment interactions underlying their aetiology.Genome-wide genotyping array remains an efficient approach for large-scale genomic data collection.However,most commercial arrays have reduced performance for biobanking in the Chinese population.Materials and methods:Deep whole-genome sequencing data from 2641 Chinese individuals were used as a reference to develop the CAS array,a custom-designed genotyping array for precision medicine.Evaluation of the array was performed by comparing data from 384 individuals assayed both by the array and whole-genome sequencing.Validation of its mitochondrial copy number estimating capacity was conducted by examining its association with established covariates among 10162 Chinese elderly.Results:The CAS Array adopts the proven Axiom technology and is restricted to 652429 single-nucleotide polymorphism(SNP)markers.Its call rate of 99.79% and concordance rate of 99.89% are both higher than for commercial arrays.Its imputation-based genome coverage reached 98.3% for common SNPs and 63.0% for low-frequency SNPs,both comparable to commercial arrays with larger SNP capacity.After validating its mitochondrial copy number estimates,we developed a publicly available software tool to facilitate the array utility.Conclusion:Based on recent advances in genomic science,we designed and implemented a high-throughput and low-cost genotyping array.It is more cost-effective than commercial arrays for large-scale Chinese biobanking.
基金supported by the National Natural Science Foundation of China(No.52004029)the Joint Doctoral Program of China Scholarship Council(CSC)(202006460073)Liuzhou Science and Technology Plan Project,China(2021AAD0102).
文摘The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes.
基金the financial support of NSFC(Nos.11402312,11474363,11232015)the National Key Basic Research Program of China(No.2015CB351905)+3 种基金support by the Fundamental Research Funds for the Central Universities to Micro&Nano Physics and Mechanics Research LaboratoryFok Ying Tung FoundationScience and Technology Innovation Project of Guangdong Provincial Education DepartmentGuangdong Natural Science Funds for Distinguished Young Scholar.
文摘Precise control from the bottom-up for realizing tunable functionality is of utmost importance to facilitate the development of molecular electronic devices.Until now,however,manipulating charge carriers over single-molecule scale remains intractable.The origin of the problem is that the nature of charge carriers is often hindered by the complexity of the investigated molecular systems.Here,via ab initio simulations,we show a force-modulated and switched ambipolar single-molecule junction with Au/cyclopropane-1,2-dithiol/Au structure.The cyclopropane ring in the molecule can be opened and closed reversibly and repeatedly by the mechanical force.This structural transition from its closed state to open state enables the ambipolarity in charge carriers—from p-type to n-type.Analysis of electronic structure reveals unambiguously the force-dependent correlation between C–S bond order and the nature of charge carriers.Based on this,we design a binary interconnected junction exhibiting resistance,rectification and negative differential resistance functionalities under mechanical modulation,i.e.,loading/unloading or pull/push.This interesting phenomenon provides both illuminating insight and feasible controllability into charge carriers in molecules,and a very general idea and useful approach for single-molecule junctions in practical single-molecule devices.