In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solut...In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solution (x, y, z) = (2, 2, r). Let m and r be positive integers with 2|m and 2 r, define the integers Ur, Vr by (m +√-1)^r=Vr+Ur√-1. If a = |Ur|,b=|Vr|,c = m^2+1 with m ≡ 2 (mod 4),a ≡ 3 (mod 4), and if r 〈 m/√1.5log3(m^2+1)-1, then a^x + b^y = c^z has only the positive integer solution (x,y, z) = (2, 2, r). The argument here is elementary.展开更多
基金NSF of China (No.10571180)the Guangdong Provincial Natural Science Foundation (No.8151027501000114)
文摘In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solution (x, y, z) = (2, 2, r). Let m and r be positive integers with 2|m and 2 r, define the integers Ur, Vr by (m +√-1)^r=Vr+Ur√-1. If a = |Ur|,b=|Vr|,c = m^2+1 with m ≡ 2 (mod 4),a ≡ 3 (mod 4), and if r 〈 m/√1.5log3(m^2+1)-1, then a^x + b^y = c^z has only the positive integer solution (x,y, z) = (2, 2, r). The argument here is elementary.