AIM: To explore the expression of BAG1 and tissue inhibitor of metalloproteinase 3 (TIMP3) in colon carcinoma and their correlation and clinicopathologic significance. METHODS: SABC immunohistochemistry was used to de...AIM: To explore the expression of BAG1 and tissue inhibitor of metalloproteinase 3 (TIMP3) in colon carcinoma and their correlation and clinicopathologic significance. METHODS: SABC immunohistochemistry was used to detect the expression of BAG1 and TIMP3 in 80 colon carcinoma tissues and 20 normal colonic mucosa. RESULTS: Positive rate of BAG1 in colon carcinoma tissue (80%) was notably higher compared to normal colonic mucosa (10%) (P < 0.05). However, no significant difference was observed in positive rate of TIMP3 in colon carcinoma tissue (43.75%) as compared with normal colonic mucosa (60%) (P > 0.05). Expression of BAG1 and TIMP3 was strongly associated with colon carcinoma differentiation, Duke's staging, lymph node metastasis and survival rate (P < 0.05), but not associated with gender and age. Moreover, BAG1 expression was not correlated with TIMP3. CONCLUSION: Our results suggest that over-expression of BAG1 or attenuated expression of TIMP3 may play an important role in genesis and development of colon carcinoma. The protein expression levels of BAG1 and TIMP3 are related to the malignant degree, infiltration and metastasis of colon carcinoma. BAG1 and TIMP3 might be new biological parameters in predicting invasion and metastasis of colon carcinoma.展开更多
The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dyn...The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.展开更多
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide and liver transplanta- tion (LT) is considered as the best therapeutic option for patients with HCC combined with cirrhosis. H...BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide and liver transplanta- tion (LT) is considered as the best therapeutic option for patients with HCC combined with cirrhosis. However, tumor recurrence after LT for HCC remains the major obstacle for long-term survival. The present study was to evaluate the effi- cacy and necessity of adjuvant chemotherapy in patients with HCC who had undergone LT.展开更多
All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a di...All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting.展开更多
BACKGROUND Primary splenic angiosarcoma(PSA)is an extremely rare and aggressive mesenchymal malignancy with high metastatic potential and a poor prognosis.There are no established treatment guidelines for PSA,even for...BACKGROUND Primary splenic angiosarcoma(PSA)is an extremely rare and aggressive mesenchymal malignancy with high metastatic potential and a poor prognosis.There are no established treatment guidelines for PSA,even for adjuvant therapy.This rare case may provide a reliable therapeutic regime for a better prognosis.CASE SUMMARY A 49-year-old female who complained of right-upper quadrant abdominal pain was diagnosed as having PSA with splenic rupture and liver metastasis.After splenectomy and liver tumor resection,she received sorafenib and camrelizumab therapy.After 15 mo of follow-up,she is in good condition,without recurrence or any identified metastasis.CONCLUSION Immunotherapy combined with targeted therapy could be a potential option for the adjuvant therapy of PSA.展开更多
Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applic...Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applications. This wavelength range not only contains some strong vibration transitions of many important molecules, thus, exhibiting enormous potential in medical, spectroscopy.展开更多
Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing...Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2...Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2)C_(8)H_(4)O_(4),Na_(2)TP),an organic salt with a theoretical capacity of 255 mAh·g^(-1),is electroactive towards both lithium and sodium.However,its electrochemical energy storage(EES)process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate.Herein,in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP.The appearance and then disappearance of the–COOLi Raman band at 1625 cm^(-1) during the de/lithiation,and the increase and then decrease of the–COONa Raman band at 1615 cm^(-1) during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+or 2Na+transfer mechanism.We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries(SIBs)than lithium-ion batteries(LIBs)could be due to the larger ion radium of Na+than Li+,which results in larger steric resistance and polarization during EES.The Na2TP,therefore,shows greater changes in spectra during de/sodiation than de/lithiation.We expect that our findings could provide a reference for the rational design of organic compounds for EES.展开更多
This work is aimed at exploring the clinical efficacy of continuous positive airway pressuie(CPAP)in treatment of patients with arrhythmias combined with obstructive sleep apnea(OSA).Through evaluating serum native th...This work is aimed at exploring the clinical efficacy of continuous positive airway pressuie(CPAP)in treatment of patients with arrhythmias combined with obstructive sleep apnea(OSA).Through evaluating serum native thiol,malonaldehyde(MDA)and nicotinamide adenine dinucleotide phosphate oxidase(NADPH oxidase)in these patients and describing the effects on oxidative parameters of CPAP therapy for 3 months,we confirmed the impact of oxidative stress on arrhythmias.A total of 64 patients with OSA combined with arrhythmias were collected from April 2014 to April 2017 with full clinical information.Patients were divided into two groups(paired experiment design):32 patients in group A(control group),who received unchanged anti-arrhythmia treatment and 32 patients in group B,who were subjected to unchanged pharmacological anti-arrhythmia therapy combined with CPAP.OSA related parameters were compared between the two groups after 3-month therapy.And the levels of parameters of oxidative stress in patients were measured before and after CPAP therapy.After 3 months of CPAP therapy,compared with the control group,the percentage of sage N3(NREM 3)and stage R(REM)in total sleep time was significantly increased,while apnea-hypopnea index(AHI)and the Epworth Sleepiness Scale(ESS)score were evidently decreased.Meanwhile,the lowest oxygen saturation(LSpCh)was also elevated after CPAP treatment for 3 months.The CPAP therapy significantly prevented the occurrence of arrhythmias(P<0.05).Both the MDA level and NADPH oxidase levels were significantly lower in the group B than in the group A(P<0.05).But serum native thiol was improved by CPAP treatment(P<0.05).In conclusion,proper use of CPAP therapy provides significant benefits for the treatment of arrhythmia in patients with OSA.展开更多
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anat...A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.展开更多
Layered P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 is a promising cathode material. It exhibits a high capacity and suitable operating voltage and undergoes a phase transition from P2 to O2 during charge/discharge.Researchers ha...Layered P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 is a promising cathode material. It exhibits a high capacity and suitable operating voltage and undergoes a phase transition from P2 to O2 during charge/discharge.Researchers have used Ti substitution to improve the cathode, yet the chemical principles that underpin elemental substitution and functional improvement remain unclear. To clarify these principles, we used in situ Raman spectroscopy to monitor chemical changes in P2–Na2/3 Ni1/3 Mn1/3 Ti1/3 O2 and P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 during charge/discharge. Based on the change in the A_(1g) and E_g peaks during charge/discharge, we concluded that Ti substitution compressed the transition metal layer and expanded the planar oxygen layer in the unit cell. Titanium stabilized the P2 phase structure, which improved the cycling stability of P2–NaNMT. Our results provide clear theoretical support for future research on modifying electrodes by elemental substitution.展开更多
The small and medium-sized river basins along southeast coast of China hold comparatively abundant water resources.However,the rapid resources urbanization in recent years has produced a series of water problems such ...The small and medium-sized river basins along southeast coast of China hold comparatively abundant water resources.However,the rapid resources urbanization in recent years has produced a series of water problems such as deterioration of river water quality,water shortage and exacerbated floods,which have constrained urban economic development.By applying the principle of triple supply-demand equilibrium,this paper focuses on the estimation of levels of water supply and demand in 2030 at different guarantee probabilities,with a case study of Xiamen city.The results show that water shortage and inefficient utilization are main problems in the city,as the future water supply looks daunting,and a water shortage may hit nearly 2×10^(8)m^(3)in an extraordinarily dry year.Based on current water supply-demand gap and its trend,this paper proposes countermeasures and suggestions for developing and utilizing groundwater resources and improving the utilization rate of water resources,which can supply as a reference for other southeast middle-to-small-sized basin cities in terms of sustainable water resources and water environment protection.展开更多
Calcium-dependent protein kinases(CDPKs/CPKs)are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins.However,the molecular mech...Calcium-dependent protein kinases(CDPKs/CPKs)are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins.However,the molecular mechanism by which plant cells relay calcium signals in response to hypoxia remains elusive.Here,we show that one member of the CDPK family in Arabidopsis thaliana,CPK12,is rapidly activated during hypoxia through calcium-dependent phosphorylation of its Ser-186 residue.Phosphorylated CPK12 shuttles from the cytoplasm to the nucleus,where it interacts with and phosphorylates the group Ⅶ ethylene-responsive transcription factors(ERF-Ⅶ)that are core regulators of plant hypoxia sensing,to enhance their stabilities.Consistently,CPK12 knockdown lines show attenuated tolerance of hypoxia,whereas transgenic plants overexpressing CPK12 display improved hypoxia tolerance.Nonethelss,loss of function of five ERF-Ⅶ proteins in an erf-vii pentuple mutant could partially suppress the enhanced hypoxia-tolerance phenotype of CPK12-overexpressing lines.Moreover,we also discovered that phosphatidic acid and 14-3-3κ protein serve as positive and negative modulators of the CPK12 cytoplasm-to-nucleus translocation,respectively.Taken together,these findings uncover a CPK12-ERF-Ⅶ regulatory module that is key to transducing calcium signals from the cytoplasm into the nucleus to potentiate hypoxia sensing in plants.展开更多
Surface-enhanced Raman spectroscopy(SERS)has advanced significantly since its inception.Numerous experimental and theoretical efforts have been made to understand the SERS effect and demonstrate its potential.Due to i...Surface-enhanced Raman spectroscopy(SERS)has advanced significantly since its inception.Numerous experimental and theoretical efforts have been made to understand the SERS effect and demonstrate its potential.Due to its extremely high sensitivity and selectivity and ability to provide molecular fingerprint information,SERS has a wide range of applications in surface and interfacial chemistry,energy,materials,biomedicine,environmental analysis,etc.This review aims to provide readers with an understanding of the principles,methodologies,and applications of SERS.We briefly introduce the fundamental theory of the SERS enhancement mechanism and summarize the details of the preparation of SERS-active substrates.Recent applications of SERS in energy systems are then highlighted,including probing surface reactions and interfacial charge transfer of batteries and electrocatalysts.Finally,the challenges and prospects of SERS research are discussed.展开更多
A deep neural network model generally consists of different modules that play essential roles in performing a task.The optimal design of a module for use in modeling a physical problem is directly related to the succe...A deep neural network model generally consists of different modules that play essential roles in performing a task.The optimal design of a module for use in modeling a physical problem is directly related to the success of the model.In this work,the effectiveness of a number of special modules,the self-attention mechanism for recognizing the importance of molecular sequence information in a polymer,as well as the big-stride representation and conditional random field for enhancing the network ability to produce desired local configurations,is numerically studied.Network models containing these modules are trained by using the well documented data of the native structures of the HP model and assessed according to their capability in making structural predictions of unseen data.The specific network design of self-attention mechanism adopted here is modified from a similar idea in natural language recognition.The big-stride representation module introduced in this work is shown to drastically improve network's capability to model polymer segments of strong lattice position correlations.展开更多
The process of photocatalysis,regarded as a promising approach for tackling the energy crisis and environmental pollution issues,is crucial for turning solar light into chemical resources.However,the solar-chemical co...The process of photocatalysis,regarded as a promising approach for tackling the energy crisis and environmental pollution issues,is crucial for turning solar light into chemical resources.However,the solar-chemical conversion efficiency of typical semiconductor catalysts is still too low,so it is vital to figure out how to boost photocatalytic performance of semiconductors.Under visible light illumination,the local surface plasmon resonance(LSPR)induced by coinage metal would enhance the local electric field and improve photocatalytic performance of semiconductors,especially in the visible range.Therefore,its attachment to semiconductors has been regarded as an efficient strategy to improve photocatalytic performance.This paper reviews the latest research progress of plasmonic photocatalysis from theory to application.Starting from the excitation and relaxation of plasmons,four main mechanisms of plasmon-enhanced semiconductor photocatalysis are introduced,including enhanced light absorption and scattering,local electromagnetic field enhancement,improved hot carriers(HCs)injection and enhanced thermal effect.Secondly,the current mainstream plasmonic photocatalysts,such as monometallic,bimetallic and non-noble metal-based plasmonic catalysts,are reviewed.Finally,the applications of plasmonic photocatalysts in H_(2) production,CO_(2) reduction,and antibacterial are further summarized.展开更多
Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically st...Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore,the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.展开更多
文摘AIM: To explore the expression of BAG1 and tissue inhibitor of metalloproteinase 3 (TIMP3) in colon carcinoma and their correlation and clinicopathologic significance. METHODS: SABC immunohistochemistry was used to detect the expression of BAG1 and TIMP3 in 80 colon carcinoma tissues and 20 normal colonic mucosa. RESULTS: Positive rate of BAG1 in colon carcinoma tissue (80%) was notably higher compared to normal colonic mucosa (10%) (P < 0.05). However, no significant difference was observed in positive rate of TIMP3 in colon carcinoma tissue (43.75%) as compared with normal colonic mucosa (60%) (P > 0.05). Expression of BAG1 and TIMP3 was strongly associated with colon carcinoma differentiation, Duke's staging, lymph node metastasis and survival rate (P < 0.05), but not associated with gender and age. Moreover, BAG1 expression was not correlated with TIMP3. CONCLUSION: Our results suggest that over-expression of BAG1 or attenuated expression of TIMP3 may play an important role in genesis and development of colon carcinoma. The protein expression levels of BAG1 and TIMP3 are related to the malignant degree, infiltration and metastasis of colon carcinoma. BAG1 and TIMP3 might be new biological parameters in predicting invasion and metastasis of colon carcinoma.
基金The work was supported by the National Natural Science Foundation of China (No.10672154).
文摘The fabrication of magnetorheological (MR) elastomers was studied by two vulcanization methods, including heat vulcanization (HV) and radiation vulcanization (RV), were employed to fabricate MRE samples. The dynamical mechanical properties were characterized by using a dynamic mechanic analyzer. In particular, both the MR effect and its durability were investigated. The experimental results showed that RV samples have large magnetoinduced modulus, large zero-field modulus, and good durability property of MR effect. To explain these results, cubic deformation and plasticizer migration were analyzed. Large magneto-induced modulus of RV sample results from cubic deformation during vulcanization process. And the plasticizer migration results in better durability of MR effect.
文摘BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide and liver transplanta- tion (LT) is considered as the best therapeutic option for patients with HCC combined with cirrhosis. However, tumor recurrence after LT for HCC remains the major obstacle for long-term survival. The present study was to evaluate the effi- cacy and necessity of adjuvant chemotherapy in patients with HCC who had undergone LT.
基金supported by the National Key Research and Development Program of China(2019YFA0705400 and 2019YFD0901100)the National Natural Science Foundation of China(21991151,21925404,and 21775127)+1 种基金the“111”Project(B17027)Guangdong Basic and Applied Basic Research Foundation(2020A1515010510)。
文摘All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting.
基金Supported by the Natural Science Foundation of Jiangxi Province (No. 20192BAB215012 and No. 20212BAB206027)the Health Commission of Jiangxi Province (No. 20203206)
文摘BACKGROUND Primary splenic angiosarcoma(PSA)is an extremely rare and aggressive mesenchymal malignancy with high metastatic potential and a poor prognosis.There are no established treatment guidelines for PSA,even for adjuvant therapy.This rare case may provide a reliable therapeutic regime for a better prognosis.CASE SUMMARY A 49-year-old female who complained of right-upper quadrant abdominal pain was diagnosed as having PSA with splenic rupture and liver metastasis.After splenectomy and liver tumor resection,she received sorafenib and camrelizumab therapy.After 15 mo of follow-up,she is in good condition,without recurrence or any identified metastasis.CONCLUSION Immunotherapy combined with targeted therapy could be a potential option for the adjuvant therapy of PSA.
文摘Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applications. This wavelength range not only contains some strong vibration transitions of many important molecules, thus, exhibiting enormous potential in medical, spectroscopy.
基金supported by the National Natural Science Foundation of China(22005130,21925404,21902137,21991151,and 22021001)the National Key Research and Development Program of China(2019YFA0705400 and 2020YFB1505800)the Natural Science Foundation of Fujian Province of China(2021J01988)。
文摘Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
基金supported by the National Natural Science Foundation of China(Nos.22005130,22272069,22004054,and 21925404)the Natural Science Foundation of Fujian Province of China(Nos.2021J01988 and 2020J05163).
文摘Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2)C_(8)H_(4)O_(4),Na_(2)TP),an organic salt with a theoretical capacity of 255 mAh·g^(-1),is electroactive towards both lithium and sodium.However,its electrochemical energy storage(EES)process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate.Herein,in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP.The appearance and then disappearance of the–COOLi Raman band at 1625 cm^(-1) during the de/lithiation,and the increase and then decrease of the–COONa Raman band at 1615 cm^(-1) during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+or 2Na+transfer mechanism.We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries(SIBs)than lithium-ion batteries(LIBs)could be due to the larger ion radium of Na+than Li+,which results in larger steric resistance and polarization during EES.The Na2TP,therefore,shows greater changes in spectra during de/sodiation than de/lithiation.We expect that our findings could provide a reference for the rational design of organic compounds for EES.
文摘This work is aimed at exploring the clinical efficacy of continuous positive airway pressuie(CPAP)in treatment of patients with arrhythmias combined with obstructive sleep apnea(OSA).Through evaluating serum native thiol,malonaldehyde(MDA)and nicotinamide adenine dinucleotide phosphate oxidase(NADPH oxidase)in these patients and describing the effects on oxidative parameters of CPAP therapy for 3 months,we confirmed the impact of oxidative stress on arrhythmias.A total of 64 patients with OSA combined with arrhythmias were collected from April 2014 to April 2017 with full clinical information.Patients were divided into two groups(paired experiment design):32 patients in group A(control group),who received unchanged anti-arrhythmia treatment and 32 patients in group B,who were subjected to unchanged pharmacological anti-arrhythmia therapy combined with CPAP.OSA related parameters were compared between the two groups after 3-month therapy.And the levels of parameters of oxidative stress in patients were measured before and after CPAP therapy.After 3 months of CPAP therapy,compared with the control group,the percentage of sage N3(NREM 3)and stage R(REM)in total sleep time was significantly increased,while apnea-hypopnea index(AHI)and the Epworth Sleepiness Scale(ESS)score were evidently decreased.Meanwhile,the lowest oxygen saturation(LSpCh)was also elevated after CPAP treatment for 3 months.The CPAP therapy significantly prevented the occurrence of arrhythmias(P<0.05).Both the MDA level and NADPH oxidase levels were significantly lower in the group B than in the group A(P<0.05).But serum native thiol was improved by CPAP treatment(P<0.05).In conclusion,proper use of CPAP therapy provides significant benefits for the treatment of arrhythmia in patients with OSA.
文摘A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.
基金supported by the NSFC (21905239, 21925404, and 21775127)the Natural Science Foundation of Shanxi Province of China (201901D211265)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0609)。
文摘Layered P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 is a promising cathode material. It exhibits a high capacity and suitable operating voltage and undergoes a phase transition from P2 to O2 during charge/discharge.Researchers have used Ti substitution to improve the cathode, yet the chemical principles that underpin elemental substitution and functional improvement remain unclear. To clarify these principles, we used in situ Raman spectroscopy to monitor chemical changes in P2–Na2/3 Ni1/3 Mn1/3 Ti1/3 O2 and P2–Na_(2/3)Ni_(1/3)Mn_(2/3)O_2 during charge/discharge. Based on the change in the A_(1g) and E_g peaks during charge/discharge, we concluded that Ti substitution compressed the transition metal layer and expanded the planar oxygen layer in the unit cell. Titanium stabilized the P2 phase structure, which improved the cycling stability of P2–NaNMT. Our results provide clear theoretical support for future research on modifying electrodes by elemental substitution.
基金This paper was funded by the Geological Survey Project of China Geological Survey"Comprehensive Geological Survey of Xiamen-Zhangzhou-Quanzhou City"(DD20190303).
文摘The small and medium-sized river basins along southeast coast of China hold comparatively abundant water resources.However,the rapid resources urbanization in recent years has produced a series of water problems such as deterioration of river water quality,water shortage and exacerbated floods,which have constrained urban economic development.By applying the principle of triple supply-demand equilibrium,this paper focuses on the estimation of levels of water supply and demand in 2030 at different guarantee probabilities,with a case study of Xiamen city.The results show that water shortage and inefficient utilization are main problems in the city,as the future water supply looks daunting,and a water shortage may hit nearly 2×10^(8)m^(3)in an extraordinarily dry year.Based on current water supply-demand gap and its trend,this paper proposes countermeasures and suggestions for developing and utilizing groundwater resources and improving the utilization rate of water resources,which can supply as a reference for other southeast middle-to-small-sized basin cities in terms of sustainable water resources and water environment protection.
基金supported by the National Natural Science Foundation of China(Projects 31725004,U22A20458)the Key Realm Research and Development Program of Guangdong Province(Project 2020B0202090001)the Natural Science Foundation of Guangdong Province(Project 2023A1515012038).
文摘Calcium-dependent protein kinases(CDPKs/CPKs)are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins.However,the molecular mechanism by which plant cells relay calcium signals in response to hypoxia remains elusive.Here,we show that one member of the CDPK family in Arabidopsis thaliana,CPK12,is rapidly activated during hypoxia through calcium-dependent phosphorylation of its Ser-186 residue.Phosphorylated CPK12 shuttles from the cytoplasm to the nucleus,where it interacts with and phosphorylates the group Ⅶ ethylene-responsive transcription factors(ERF-Ⅶ)that are core regulators of plant hypoxia sensing,to enhance their stabilities.Consistently,CPK12 knockdown lines show attenuated tolerance of hypoxia,whereas transgenic plants overexpressing CPK12 display improved hypoxia tolerance.Nonethelss,loss of function of five ERF-Ⅶ proteins in an erf-vii pentuple mutant could partially suppress the enhanced hypoxia-tolerance phenotype of CPK12-overexpressing lines.Moreover,we also discovered that phosphatidic acid and 14-3-3κ protein serve as positive and negative modulators of the CPK12 cytoplasm-to-nucleus translocation,respectively.Taken together,these findings uncover a CPK12-ERF-Ⅶ regulatory module that is key to transducing calcium signals from the cytoplasm into the nucleus to potentiate hypoxia sensing in plants.
基金supported by the National Key Research and Development Program of China (2020YFB1505800)the National Natural Science Foundation of China (22005130,21925404,22174165,21902137,and 21991151)+1 种基金the China Postdoctoral Science Foundation (Bx20220187)the Natural Science Foundation of Fujian Province of China (2021J01988).
文摘Surface-enhanced Raman spectroscopy(SERS)has advanced significantly since its inception.Numerous experimental and theoretical efforts have been made to understand the SERS effect and demonstrate its potential.Due to its extremely high sensitivity and selectivity and ability to provide molecular fingerprint information,SERS has a wide range of applications in surface and interfacial chemistry,energy,materials,biomedicine,environmental analysis,etc.This review aims to provide readers with an understanding of the principles,methodologies,and applications of SERS.We briefly introduce the fundamental theory of the SERS enhancement mechanism and summarize the details of the preparation of SERS-active substrates.Recent applications of SERS in energy systems are then highlighted,including probing surface reactions and interfacial charge transfer of batteries and electrocatalysts.Finally,the challenges and prospects of SERS research are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.21973018 and 21534002)the Natural Sciences and Engineering Research Council(NSERC)of Canada。
文摘A deep neural network model generally consists of different modules that play essential roles in performing a task.The optimal design of a module for use in modeling a physical problem is directly related to the success of the model.In this work,the effectiveness of a number of special modules,the self-attention mechanism for recognizing the importance of molecular sequence information in a polymer,as well as the big-stride representation and conditional random field for enhancing the network ability to produce desired local configurations,is numerically studied.Network models containing these modules are trained by using the well documented data of the native structures of the HP model and assessed according to their capability in making structural predictions of unseen data.The specific network design of self-attention mechanism adopted here is modified from a similar idea in natural language recognition.The big-stride representation module introduced in this work is shown to drastically improve network's capability to model polymer segments of strong lattice position correlations.
基金supported by the National Key Research and Development Program of China(2019YFA0705400)the National Natural Science Foundation of China(22104124,22005130,22272069,and 22104135)+1 种基金the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF2002)the Fundamental Research Funds for the Central Universities(20720220117).
文摘The process of photocatalysis,regarded as a promising approach for tackling the energy crisis and environmental pollution issues,is crucial for turning solar light into chemical resources.However,the solar-chemical conversion efficiency of typical semiconductor catalysts is still too low,so it is vital to figure out how to boost photocatalytic performance of semiconductors.Under visible light illumination,the local surface plasmon resonance(LSPR)induced by coinage metal would enhance the local electric field and improve photocatalytic performance of semiconductors,especially in the visible range.Therefore,its attachment to semiconductors has been regarded as an efficient strategy to improve photocatalytic performance.This paper reviews the latest research progress of plasmonic photocatalysis from theory to application.Starting from the excitation and relaxation of plasmons,four main mechanisms of plasmon-enhanced semiconductor photocatalysis are introduced,including enhanced light absorption and scattering,local electromagnetic field enhancement,improved hot carriers(HCs)injection and enhanced thermal effect.Secondly,the current mainstream plasmonic photocatalysts,such as monometallic,bimetallic and non-noble metal-based plasmonic catalysts,are reviewed.Finally,the applications of plasmonic photocatalysts in H_(2) production,CO_(2) reduction,and antibacterial are further summarized.
文摘Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore,the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.