期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ketamine suppresses intestinal NF-kappa B activation and proinflammatory cytokine in endotoxic rats 被引量:28
1
作者 JieSun Xiao-DongWang +1 位作者 HongLiu jian-guoxu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2004年第7期1028-1031,共4页
AIM: To investigate the protective effect of ketamine on the endotoxin-induced proinflammatory cytokines and NFkappa B activation in the intestine. ETHODS: Adult male Wistar rats were randomly divided into 6 groups: (... AIM: To investigate the protective effect of ketamine on the endotoxin-induced proinflammatory cytokines and NFkappa B activation in the intestine. ETHODS: Adult male Wistar rats were randomly divided into 6 groups: (a) normal saline control, (b) challenged with endotoxin (5 mg/kg) and treated by saline, (c) challenged with endotoxin (5 mg/kg) and treated by ketamine (0.5 mg/kg), (d) challenged with endotoxin (5 mg/kg) and treated by ketamine (5 mg/kg ), (e) challenged with endotoxin (5 mg/kg) and treated by ketamine (50 mg/kg), and (f) saline injected and treated by ketamine (50 mg/kg). After 1, 4 or 6 h, TNF-α and IL-6 mRNA were investigated in the tissues of the intestine (jejunum) by RT-PCR. TNF-α and IL-6 were measured by ELISA. We used electrophoretic mobility shift assay (EMSA) to investigate NF-kappa B activity in the intestine. RESULTS: NF-kappa B activity, the expression of TNF-α and IL-6 were enhanced in the intestine by endotoxin. Ketamine at a dose of 0.5 mg/kg could suppress endotoxininduced TNF-α mRNA and protein elevation and inhibit NFkappa B activation in the intestine. However the least dosage of ketamine to inhibit IL-6 was 5 mg/kg in our experiment. CONCLUSION: Ketamine can suppress endotoxin-induced production of proinflammatory cytokines such as TNF-α and IL-6 production in the intestine. This suppressive effect may act through inhibiting NF-kappa B. 展开更多
关键词 克他命 NF-κB 炎症 内毒素 动物实验 药理作用 肠道功能 细胞因子 脂多糖
下载PDF
Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperf usion injury 被引量:8
2
作者 Shu-YunZheng Xiao-BingFu +3 位作者 jian-guoxu Jing-YuZhao Tong-ZhuSun WeiChen 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第5期656-660,共5页
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest... AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury. 展开更多
关键词 抑制作用作用 P38 有丝分裂 活性蛋白 蛋白激酶 肠上皮细胞 细胞调亡 阻塞功能 局部缺血 多次灌注伤 消化道
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部