AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR...AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain-and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3'-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and proinflammatory secretions including IL-6, TNF-alpha, IL-1 beta, and IFN-gamma, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and in-flammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.展开更多
文摘AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3'-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain-and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3'-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and proinflammatory secretions including IL-6, TNF-alpha, IL-1 beta, and IFN-gamma, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and in-flammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.