期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Role of tumor necrosis factor-alpha in zebrafish retinal neurogenesis and myelination 被引量:2
1
作者 Xu-Dan Lei Yan Sun +3 位作者 Shi-Jiao Cai Yang-Wu Fang jian-lin cui Yu-Hao Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第6期831-837,共7页
AIM: To investigate the role of tumor necrosis factoralpha (TNF-α) in zebrafish retinal development and myelination. METHODS: Morpholino oligonucleotides (MO), which are complementary to the translation start... AIM: To investigate the role of tumor necrosis factoralpha (TNF-α) in zebrafish retinal development and myelination. METHODS: Morpholino oligonucleotides (MO), which are complementary to the translation start site of the wild-type embryonic zebrafish TNF-α mRNA sequence, were synthesized and injected into one to four-cell embryos. The translation blocking specificity was verified by Western blotting using an anti-TNF-α antibody, whole-mount in sltuhybridization using a hepatocytespecific mRNA probe ceruloplasmin (cp), and coinjection of TNF-α MO and TNF-α mRNA. An atonel homolog 7 (atoh7) mRNA probe was used to detect neurogenesis onset. The retinal neurodifferentiation was analyzed by immunohistochemistry using antibodies Zn12, Zprl, and Zpr3 to label ganglion cells, cones, and rods, respectively. Myelin basic protein (mbp)was used as a marker to track and observe the myelination using whole-mount in situ hybridization. RESULTS: Targeted knockdown of TNF-α resulted in specific suppression of TNF-α expression and a severely underdeveloped liver. The co-injection of TNF-α MO and mRNA rescued the liver development. Retinal neurogenesis in TNF-cc morphants was initiated on time. The retina was fully laminated, while ganglion cells, cones, and rods were well differentiated at 72 hours post-fertilization (hpf). mbp was expressed in Schwann cells in the lateral line nerves and cranial nerves from 3 days post -fertilization (dpf) as well as in oligodendrocytes linearly along the hindbrain bundles and the spinal cord from 4 dpf, which closely resembled its endogenous profile. CONCLUSION: TNF-α is not an essential regulator for retinal neurogenesis and optic myelination. 展开更多
关键词 tumor necrosis factor-alpha RETINA NEUROGENESIS MYELINATION ZEBRAFISH
下载PDF
Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model 被引量:1
2
作者 Ya-jie Wang Shi-jiao Cai +3 位作者 jian-lin cui Yang Chen Xin Tang Yu-hao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期795-803,共9页
Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few st... Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors. 展开更多
关键词 nerve regeneration optic nerve injury light injury photoreceptor cell cell proliferation retinal regeneration light/dark test BEHAVIOR ZEBRAFISH PHOTOTAXIS immunohistochemistry in situ hybridization neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部