Physical properties of different fibers (mineral, cellulose, or carbon fiber) and their stabilizing and reinforcing effects on asphalt mortar performance were studied. Scanning electron microscopy was used to study ...Physical properties of different fibers (mineral, cellulose, or carbon fiber) and their stabilizing and reinforcing effects on asphalt mortar performance were studied. Scanning electron microscopy was used to study the effect of fiber's microstructure on asphalt mortar's performance. Laboratory tests of mesh-basket draindown and oven heating were designed and performed to evaluate the fibers' asphalt absorption and thermostability. A cone penetration test was used to study the flow resistance of fiber-modified asphalt mortar. Results showed that fiber can form a three-dimensional network structure in asphalt, and this network can be retained at high temperature. This network of fibers favors the formation of a thick coating of mastic without asphalt draining down. Cellulose fiber possessed a greater effect on asphalt absorption and sta- bilization than did the other fibers (mineral and carbon fiber). A dynamic shear rheometer was used to evaluate their rheological properties and rut resistance. Results indicated that fiber can effectively improve the rut and flow resistance of asphalt mortar. However, the bending beam rheometer results demonstrated that the addition of fiber had negative effects on the creep stiffness and creep rate of asphalt mortar.展开更多
基金supported by the National Natural Science Foundation of China (51008307)the Fundamental Research Funds for the Central Universities (09CX04039A)the Graduate Student Innovation Project of China University of Petroleum (East China) (12CX06055A)
文摘Physical properties of different fibers (mineral, cellulose, or carbon fiber) and their stabilizing and reinforcing effects on asphalt mortar performance were studied. Scanning electron microscopy was used to study the effect of fiber's microstructure on asphalt mortar's performance. Laboratory tests of mesh-basket draindown and oven heating were designed and performed to evaluate the fibers' asphalt absorption and thermostability. A cone penetration test was used to study the flow resistance of fiber-modified asphalt mortar. Results showed that fiber can form a three-dimensional network structure in asphalt, and this network can be retained at high temperature. This network of fibers favors the formation of a thick coating of mastic without asphalt draining down. Cellulose fiber possessed a greater effect on asphalt absorption and sta- bilization than did the other fibers (mineral and carbon fiber). A dynamic shear rheometer was used to evaluate their rheological properties and rut resistance. Results indicated that fiber can effectively improve the rut and flow resistance of asphalt mortar. However, the bending beam rheometer results demonstrated that the addition of fiber had negative effects on the creep stiffness and creep rate of asphalt mortar.