The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(S...The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.展开更多
基金supported by National Natural Science Foundation of China(Nos.91016006 and 91116002)Fundamental Research Funds for the Central Universities(Nos.30420111109,30420120305 and SWJTU11ZT06)in part by a PFund from Louisiana Board of Regents
文摘The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.