We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results a...We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results are presented,and it is found that the influence of the stochastic mixture on radiative transfer is clearly parameter-dependent.Our results confirm that previous multidimensional results obtained in different studies are basically consistent,which is interpreted in terms of the relationship between the photon mean free path l_(p)and the system size L.Nonlinear effects,including those due to scattering and radiation-material coupling,are also discussed.To further understand the particle size effect,we employ a dimensionless parameter l_(p)/L,from which a critical particle size can be derived.On the basis of further 2D simulations,we find that an inhomogeneous mix is obtained for l_(p)/L>0.1.Furthermore,2D material temperature distributions reveal that self-shielding and particle-particle shielding of radiation occur,and are enhanced when l_(p)/L is increased.Our work is expected to provide benchmark results to verify proposed homogenized models and/or other codes for stochastic radiative transfer in realistic physical scenarios.展开更多
This article was originally published online on 30 August 2024.Due to a production error,as originally published the author list was not in its intended order.All online versions of this article were corrected on 9 Se...This article was originally published online on 30 August 2024.Due to a production error,as originally published the author list was not in its intended order.All online versions of this article were corrected on 9 September 2024 and it appears correctly in print.AIP Publishing apologizes for this error.展开更多
基金financial support by the National Natural Science Foundation of China(Grant No.12374259)funded by the National Natural Science Foundation of China under Grant No.12375235。
文摘We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results are presented,and it is found that the influence of the stochastic mixture on radiative transfer is clearly parameter-dependent.Our results confirm that previous multidimensional results obtained in different studies are basically consistent,which is interpreted in terms of the relationship between the photon mean free path l_(p)and the system size L.Nonlinear effects,including those due to scattering and radiation-material coupling,are also discussed.To further understand the particle size effect,we employ a dimensionless parameter l_(p)/L,from which a critical particle size can be derived.On the basis of further 2D simulations,we find that an inhomogeneous mix is obtained for l_(p)/L>0.1.Furthermore,2D material temperature distributions reveal that self-shielding and particle-particle shielding of radiation occur,and are enhanced when l_(p)/L is increased.Our work is expected to provide benchmark results to verify proposed homogenized models and/or other codes for stochastic radiative transfer in realistic physical scenarios.
文摘This article was originally published online on 30 August 2024.Due to a production error,as originally published the author list was not in its intended order.All online versions of this article were corrected on 9 September 2024 and it appears correctly in print.AIP Publishing apologizes for this error.