Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and l...Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.展开更多
CHALLENGES AND RESEARCH PROGRESS Recent advancements in analytical capabilities and the precision of measuring instruments in in-situ laser ablation mass spectrometry(LA-MC-ICPMS)have markedly broad ened the utility o...CHALLENGES AND RESEARCH PROGRESS Recent advancements in analytical capabilities and the precision of measuring instruments in in-situ laser ablation mass spectrometry(LA-MC-ICPMS)have markedly broad ened the utility of the U-Pb isotopic geochronometer.This progress has paved the way for accurately determining the ab solute ages of minerals with low uranium concentrations.In re cent years,in-situ U-Pb dating has witnessed rapid advance ments across diverse mineral types,encompassing calcite,dolo mite,fluorite,nacrite,anatase,and wolframite(Roberts et al.,2020).展开更多
Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better underst...Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.展开更多
Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydroc...Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydrocarbon maturation.This study carried out Rb-Sr and^(40)Ar-^(39)Ar dating of authigenic illitic clay samples separated from the Palaeogene sandstone in the northern South China Sea.Our Rb-Sr data further confirm the previously reported three periods of fluid flow events(at 34.5±0.9,31.2±0.6,and 23.6±0.8 Ma,respectively)in the northern South China Sea,which are related to regional episodic tectonism.However,^(40)Ar-^(39)Ar ages of illite obtained in this study are significantly younger than the corresponding Rb-Sr ages.The significantly younger^(40)Ar-^(39)Ar ages were probably due to ^(40)Ar loss caused by later dry heating events on the Hainan Island that have not affected the Rb-Sr isotopic systematics.The inconsistency between Rb-Sr and^(40)Ar-^(39)Ar data should be attributed to different isotopic behaviors of K-Ar and Rb-Sr isotopic systematics in illite.Our results indicate that Rb-Sr isotopic dating method may be a preferential approach for clay dating in geological settings where exist younger dry heating events.展开更多
文摘Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121)the support of a visiting research fellowship to allow the first author to visit the University of Queensland in 2020.
文摘CHALLENGES AND RESEARCH PROGRESS Recent advancements in analytical capabilities and the precision of measuring instruments in in-situ laser ablation mass spectrometry(LA-MC-ICPMS)have markedly broad ened the utility of the U-Pb isotopic geochronometer.This progress has paved the way for accurately determining the ab solute ages of minerals with low uranium concentrations.In re cent years,in-situ U-Pb dating has witnessed rapid advance ments across diverse mineral types,encompassing calcite,dolo mite,fluorite,nacrite,anatase,and wolframite(Roberts et al.,2020).
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121,U19B2007)the Major National Science and Technology Programs in the“Thirteenth Five-Year”Plan Period(No.2016ZX05024-006-002)the PetroChina Innovation Foundation(No.2018D-5007-0104)。
文摘Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121,U19B2007)。
文摘Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydrocarbon maturation.This study carried out Rb-Sr and^(40)Ar-^(39)Ar dating of authigenic illitic clay samples separated from the Palaeogene sandstone in the northern South China Sea.Our Rb-Sr data further confirm the previously reported three periods of fluid flow events(at 34.5±0.9,31.2±0.6,and 23.6±0.8 Ma,respectively)in the northern South China Sea,which are related to regional episodic tectonism.However,^(40)Ar-^(39)Ar ages of illite obtained in this study are significantly younger than the corresponding Rb-Sr ages.The significantly younger^(40)Ar-^(39)Ar ages were probably due to ^(40)Ar loss caused by later dry heating events on the Hainan Island that have not affected the Rb-Sr isotopic systematics.The inconsistency between Rb-Sr and^(40)Ar-^(39)Ar data should be attributed to different isotopic behaviors of K-Ar and Rb-Sr isotopic systematics in illite.Our results indicate that Rb-Sr isotopic dating method may be a preferential approach for clay dating in geological settings where exist younger dry heating events.