In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. ...In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.展开更多
In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the pr...In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.展开更多
A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The c...A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The characterization is performed by theory analysis,circuit simulation,and full-wave electromagnetic (EM) simulation.The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated.For application,a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed,fabricated,and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC).Three CELC cells with wideband stopband performance in the conductor strip and ground plane,respectively,are utilized in terms of single negative permeability.The design concept has been verified by the measurement data.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
基金Project (Nos.60871027 and 60971118) supported by the National Natural Science Foundation of China
文摘A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The characterization is performed by theory analysis,circuit simulation,and full-wave electromagnetic (EM) simulation.The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated.For application,a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed,fabricated,and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC).Three CELC cells with wideband stopband performance in the conductor strip and ground plane,respectively,are utilized in terms of single negative permeability.The design concept has been verified by the measurement data.