期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Preparation of micro-nano hollow multiphase ceramic microspheres containing MnFe_2O_4 absorbent by self-reactive quenching method
1
作者 Hong-Fei Lou jian-jiang wang +2 位作者 Zhi-Ning Zhao Xu-Dong Cai Yong-Shen Hou 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期592-598,共7页
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching met... Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent. 展开更多
关键词 Self-reactive quenching method Micro-nano hollow multiphase ceramic microspheres Collisions and burst Refinement
下载PDF
In situ regulating intimately connected heterostructure by decomposition of solid solution oxides toward high-efficient water oxidation
2
作者 Shao-Fei Zhang Xiao-Lu Yin +7 位作者 Jin wang Jian-Li Kang Tian-Tian Li Jin-Feng Sun Yong-Qiang Meng jian-jiang wang Dian-Long wang Kai-Qiang Qin 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1557-1569,共13页
Heterogeneous interfaces produced by interdomain interactions on a nanoscale performs a crucial role in boosting the properties of an electrocatalyst toward oxygen evolution reaction(OER)process.Herein,a series of dua... Heterogeneous interfaces produced by interdomain interactions on a nanoscale performs a crucial role in boosting the properties of an electrocatalyst toward oxygen evolution reaction(OER)process.Herein,a series of dual-phase electrodes with intimately connected heterointerfaces are prepared by in situ decomposing solid solution oxide of Ni_(x)Co_(y)Fe_(100-x-y)O,which grew on Ni foam massively via an ultrafast combustion approach.Particularly,with high-reaction kinetics caused by the reduction treatment at 450℃,the less electronegative Fe and Co are more oxyphilic than Ni,which facilitated their co-exsolution and formation of CoFe_2O_4/NiO oxide with enriched oxygen vacancies.Benefiting from the nanoporous framework,heterojunction structure,and oxygen defects,the self-supporting electrodes present rapid charge/mass transmission and provide abundant active sites for OER.The optimized sample(R-SNCF4.5)shows low overpotentials of 226 and 324 mV at 10 and100 mA·cm^(-2),a small Tafel slope(46.7 mV·dec^(-1)),and excellent stability.The assembled R-SNCF4.5//Pt/C/NF electrolyzer demonstrates continuous electrolysis over 50 h at a current density of 10 mA·cm^(-2),under 1.51 V.Density functional theory(DFT)calculations verify that the strong electronic modulation plays a critical part in the CoFe_2O_4/NiO hybrid by lowering the energy barriers for the ratedetermining steps,and Fe sites are the most active OER sites. 展开更多
关键词 Rapid combustion Decomposition of solid solution oxide Dual-phase heterostructure Oxygen evolution reaction Theoretical calculation
原文传递
Review on Intrinsic Electrocatalytic Activity of Transition Metal Nitrides on HER 被引量:3
3
作者 Han-Ming Zhang jian-jiang wang +5 位作者 Yongqiang Meng Fushen Lu Muwei Ji Caizhen Zhu Jian Xu Jinfeng Sun 《Energy Material Advances》 2022年第1期45-72,共28页
Hydrogen energy is considered as an ideal energy with the advantages of green,sustainability,and high energy density,and water splitting is one of the efficient strategies for green hydrogen without carbon emission.As... Hydrogen energy is considered as an ideal energy with the advantages of green,sustainability,and high energy density,and water splitting is one of the efficient strategies for green hydrogen without carbon emission.As for cathodic hydrogen evolution reaction(HER),besides the Pt-based electrocatalysts with excellent electrocatalytic activities on HER,transition metal nitrides(TMNs)as cheap and facile-prepared electrocatalysts have shown remarkable electrocatalytic activities.Incorporation of N atom in metal interstitial lattice results in the unique structure of TMN with high electronic conductivity,strong chemical stability,and d-band contraction.Although the intrinsic electrocatalytic activities of TMNs are mostly lower than those of Pt,it also attracted much attention to the development of TMN with higher intrinsic activity by electronic structure modulation.Here,we review the recent improvement strategies for the intrinsic electrocatalytic activities of TMN catalysts on HER by electronic structure modulation,such as facet,alloying,doping,vacancy,heterostructure,and hybridization.Some important breakthroughs of TMNs have been made;however,the scale application of TMNs with high activity in commercial water electrolyzer is urgent to explore.The future development of TMNs is proposed to focus on developing facile synthesis methods,elucidating regulation mechanism and catalytic mechanism,and enhancing activity and stability. 展开更多
关键词 BREAKTHROUGH STRUCTURE MECHANISM
原文传递
热处理对自反应淬熄法制备低频LiZn铁氧体空心微珠的影响(英文)
4
作者 Xu-dong CAI jian-jiang wang +3 位作者 Xiao-jun JIANG Jun LING Yi XU Zhan-tong GAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2018年第5期409-416,共8页
目的:自反应淬熄法制备的LiZn铁氧体空心微珠密度小,低频吸波性能良好,但微珠表面晶型生长不充分。对其采用特定热处理工艺不仅可以使晶体充分发育,获得特定晶型,还可以实现对低频吸波性能的有效调控。本文旨在研究热处理工艺对LiZn铁... 目的:自反应淬熄法制备的LiZn铁氧体空心微珠密度小,低频吸波性能良好,但微珠表面晶型生长不充分。对其采用特定热处理工艺不仅可以使晶体充分发育,获得特定晶型,还可以实现对低频吸波性能的有效调控。本文旨在研究热处理工艺对LiZn铁氧体空心微珠表面形貌、相结构和低频吸波性能的影响。创新点:1.通过热处理工艺,实现对LiZn铁氧体空心微珠表面形貌、相结构和低频吸波性能的有效调控;2.深入分析热处理工艺对LiZn铁氧体空心微珠低频吸波性能的改善机理。方法:1.通过工艺探索,确定热处理的详细工艺参数。2.通过扫描电子显微镜检测和X射线衍射分析,获得热处理前后LiZn铁氧体空心微珠的微观形貌(图2)和物相组成(图3)。3.通过矢量网络分析仪,获得热处理前后材料的电磁参数(图4);在此基础上对比其吸波性能(图5),并研究吸波影响机理。结论:1.采用240°C/min升温至1200°C并保温4 h的热处理后,LiZn铁氧体空心微珠表面晶粒明显长大;2.热处理后,微珠四个电磁参数均有所增大,低频吸波性能明显提高,吸收峰值向低频移动;3.表面多种形状微纳米晶粒的形成和长大可能是LiZn铁氧体空心微珠低频吸波性能得以提高的主要原因。 展开更多
关键词 LIZN铁氧体 热处理 低频 吸波性能
原文传递
Preparation of hollow ceramic microspheres absorbent based on self-reactive quenching technology
5
作者 jian-jiang wang Hong-Fei Lou +1 位作者 Jin-Hua Wen Xu-Dong Cai 《Rare Metals》 SCIE EI CAS CSCD 2015年第5期344-350,共7页
A1 + BaO2 + Fe2O3 + sucrose and O2 as reaction system and feeding gas, respectively, are used to prepare hollow multiphase ceramic microspheres (HMCMs) absorbent based on self-reactive quenching technology. The m... A1 + BaO2 + Fe2O3 + sucrose and O2 as reaction system and feeding gas, respectively, are used to prepare hollow multiphase ceramic microspheres (HMCMs) absorbent based on self-reactive quenching technology. The morphologies, particle size distribution, hollow structure and phase compositions were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and size analysis. The results show that the quenching products possess high sphere-forming rate, and most of them are hollow structures. Owing to the self-burst, the particle size is between 40 and 70 μm. The phase compositions contain Al2O3, Fe3O4, Fe2O3, Ba2Fe14O22, BaO2 and BaFe4O7. The microwave absorbing tests show that the lowest reflectivity of HMCMs is -19 dB. The frequency bands less than -10 dB are from 13.0 to 15.8 GHz. The reasons for HMCMs possessing good microwave absorbing properties may be their magnetic and electrical properties as well as special hollow structure. 展开更多
关键词 Self-reactive quenching technology Hollow multiphase ceramic microspheres Microwave absorbing properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部