期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition 被引量:8
1
作者 Yan-zhao Guo Jin-long Liu +9 位作者 Jiang-wei Liu Yu-ting Zheng Yun Zhao Xiao-lu Yuan Zi-hao Guo Li-fu Hei Liang-xian Chen Jun-jun Wei jian-peng xing Cheng-ming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期703-712,共10页
Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity i... Chemical vapor deposition(CVD)-grown diamond films have been developed as irradiation-resistant materials to replace or upgrade current detectors for use in extreme radiation environments. However, their sensitivity in practical applications has been inhibited by space charge stability issues caused by defects and impurities in pure diamond crystal materials. In this study, two high-quality CVD-grown single-crystal diamond(SCD) detectors with low content of nitrogen impurities were fabricated and characterized. The intrinsic properties of the SCD samples were characterized using Raman spectroscopy, stereomicroscopy, and X-ray diffraction with the rocking curve mode, cathode luminescence(CL), and infrared and ultraviolet-visible-near infrared spectroscopies. After packaging the detectors, the dark current and energy resolution under α particle irradiation were investigated. Dark currents of less than 5 pA at 100 V were obtained after annealing the electrodes, which is comparable with the optimal value previously reported. The detector that uses a diamond film with higher nitrogen content showed poor energy resolution, whereas the detector with more dislocations showed poor charge collection efficiency(CCE). This demonstrates that the nitrogen content in diamond has a significant effect on the energy resolution of detectors, while the dislocations in diamond largely contribute to the poor CCE of detectors. 展开更多
关键词 SINGLE-CRYSTAL DIAMOND NITROGEN IMPURITY DETECTOR αparticle
下载PDF
A novel method of quantitative evaluation and comprehensive classification of low permeability-tight oil reservoirs: A case study of Jidong Oilfield, China
2
作者 Dong-Liang Jiang Hao Chen +6 位作者 jian-peng xing Lin Shang Qun-Hui Wang Yan-Chun Sun Yao Zhao Jian Cui Ian Duncan 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1527-1541,共15页
The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and complex mi... The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and complex micro pore structure make the main controlling factors subjective and the classification boundaries unclear. Therefore, a new indicator considering the interaction between fluid and rock named Threshold Flow Zone Indicator(TFZI) is proposed, it can be used as the main sequence of correlation analysis to screen the main controlling factors, and the clustering algorithm is optimized combined with probability distribution to determine the classification boundaries. The sorting coefficient, main throat radius, movable fluid saturation and displacement pressure are screened as the representative parameters for the following four key aspects: rock composition, microstructure, flow capacity and the interaction between rock and fluid. Compared with the traditional probability distribution and clustering algorithm, the boundary of the optimized clustering algorithm proposed in this paper is more accurate.The classification results are consistent with sedimentary facies, oil levels and oil production intensity.This method provides an important basis for the development of low permeability-tight reservoirs. 展开更多
关键词 Low permeability-tight reservoir Classification boundary Correlation analysis Probability distribution Clustering algorithm
下载PDF
Numerical evaluations on the fluid production in the in-situ conversion of continental shale oil reservoirs
3
作者 Zhao-Bin Zhang Maryelin Josefina Briceno Montilla +3 位作者 Shou-Ding Li Xiao Li jian-peng xing Yan-Zhi Hu 《Petroleum Science》 SCIE EI CAS 2024年第4期2485-2501,共17页
In-situ conversion presents a promising technique for exploiting continental oil shale formations,characterized by highly fractured organic-rich rock.A 3D in-situ conversion model,which incorporates a discrete fractur... In-situ conversion presents a promising technique for exploiting continental oil shale formations,characterized by highly fractured organic-rich rock.A 3D in-situ conversion model,which incorporates a discrete fracture network,is developed using a self-developed thermal-flow-chemical(TFC)simulator.Analysis of the model elucidates the in-situ conversion process in three stages and defines the transformation of fluids into three distinct outcomes according to their end stages.The findings indicate that kerogen decomposition increases fluid pressure,activating fractures and subsequently enhancing permeability.A comprehensive analysis of activated fracture permeability and heating power reveals four distinct production modes,highlighting that increasing heating power correlates with higher cumulative fluid production.Activated fractures,with heightened permeability,facilitate the mobility of heavy oil toward production wells but hinder its cracking,thereby limiting light hydrocarbon production.Additionally,energy efficiency research demonstrates the feasibility of the in-situ conversion in terms of energy utilization,especially when considering the surplus energy from high-fluctuation energy sources such as wind and solar power to provide heating. 展开更多
关键词 In-situ conversion Continental shale oil Natural fracture network TFC model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部