Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers bu...Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers but also from dynamic variation of available bandwidth, brings forward great challenge to video streaming. To attack this problem, an adaptive scheme based on rate-distortion optimization (RDO) is proposed in this paper. While low complexity RDO based frame dropping is exploited to shape bitrate into available bandwidth in peers, the streamed bitstream is dynamically switched among multiple available versions in an RDO way by the streaming server. Simulation results show that the proposed scheme based on RDO achieves great gain in overall perceived quality over simple heuristic schemes.展开更多
Due to dramatically increasing information published in social networks,privacy issues have given rise to public concerns.Although the presence of differential privacy provides privacy protection with theoretical foun...Due to dramatically increasing information published in social networks,privacy issues have given rise to public concerns.Although the presence of differential privacy provides privacy protection with theoretical foundations,the trade-off between privacy and data utility still demands further improvement.However,most existing studies do not consider the quantitative impact of the adversary when measuring data utility.In this paper,we firstly propose a personalized differential privacy method based on social distance.Then,we analyze the maximum data utility when users and adversaries are blind to the strategy sets of each other.We formalize all the payoff functions in the differential privacy sense,which is followed by the establishment of a static Bayesian game.The trade-off is calculated by deriving the Bayesian Nash equilibrium with a modified reinforcement learning algorithm.The proposed method achieves fast convergence by reducing the cardinality from n to 2.In addition,the in-place trade-off can maximize the user's data utility if the action sets of the user and the adversary are public while the strategy sets are unrevealed.Our extensive experiments on the real-world dataset prove the proposed model is effective and feasible.展开更多
Although using convolutional neural networks(CNNs)for computer-aided diagnosis(CAD)has made tremendous progress in the last few years,the small medical datasets remain to be the major bottleneck in this area.To addres...Although using convolutional neural networks(CNNs)for computer-aided diagnosis(CAD)has made tremendous progress in the last few years,the small medical datasets remain to be the major bottleneck in this area.To address this problem,researchers start looking for information out of the medical datasets.Previous efforts mainly leverage information from natural images via transfer learning.More recent research work focuses on integrating knowledge from medical practitioners,either letting networks resemble how practitioners are trained,how they view images,or using extra annotations.In this paper,we propose a scheme named Domain Guided-CNN(DG-CNN)to incorporate the margin information,a feature described in the consensus for radiologists to diagnose cancer in breast ultrasound(BUS)images.In DG-CNN,attention maps that highlight margin areas of tumors are first generated,and then incorporated via different approaches into the networks.We have tested the performance of DG-CNN on our own dataset(including 1485 ultrasound images)and on a public dataset.The results show that DG-CNN can be applied to different network structures like VGG and ResNet to improve their performance.For example,experimental results on our dataset show that with a certain integrating mode,the improvement of using DG-CNN over a baseline network structure ResNet 18 is 2.17%in accuracy,1.69%in sensitivity,2.64%in specificity and 2.57%in AUC(Area Under Curve).To the best of our knowledge,this is the first time that the margin information is utilized to improve the performance of deep neural networks in diagnosing breast cancer in BUS images.展开更多
文摘Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers but also from dynamic variation of available bandwidth, brings forward great challenge to video streaming. To attack this problem, an adaptive scheme based on rate-distortion optimization (RDO) is proposed in this paper. While low complexity RDO based frame dropping is exploited to shape bitrate into available bandwidth in peers, the streamed bitstream is dynamically switched among multiple available versions in an RDO way by the streaming server. Simulation results show that the proposed scheme based on RDO achieves great gain in overall perceived quality over simple heuristic schemes.
文摘Due to dramatically increasing information published in social networks,privacy issues have given rise to public concerns.Although the presence of differential privacy provides privacy protection with theoretical foundations,the trade-off between privacy and data utility still demands further improvement.However,most existing studies do not consider the quantitative impact of the adversary when measuring data utility.In this paper,we firstly propose a personalized differential privacy method based on social distance.Then,we analyze the maximum data utility when users and adversaries are blind to the strategy sets of each other.We formalize all the payoff functions in the differential privacy sense,which is followed by the establishment of a static Bayesian game.The trade-off is calculated by deriving the Bayesian Nash equilibrium with a modified reinforcement learning algorithm.The proposed method achieves fast convergence by reducing the cardinality from n to 2.In addition,the in-place trade-off can maximize the user's data utility if the action sets of the user and the adversary are public while the strategy sets are unrevealed.Our extensive experiments on the real-world dataset prove the proposed model is effective and feasible.
基金supported by the National Natural Science Foundation of China under Grant Nos.61976012 and 61772060the National Key Research and Development Program of China under Grant No.2017YFB1301100China Education and Research Network Innovation Project under Grant No.NGII20170315.
文摘Although using convolutional neural networks(CNNs)for computer-aided diagnosis(CAD)has made tremendous progress in the last few years,the small medical datasets remain to be the major bottleneck in this area.To address this problem,researchers start looking for information out of the medical datasets.Previous efforts mainly leverage information from natural images via transfer learning.More recent research work focuses on integrating knowledge from medical practitioners,either letting networks resemble how practitioners are trained,how they view images,or using extra annotations.In this paper,we propose a scheme named Domain Guided-CNN(DG-CNN)to incorporate the margin information,a feature described in the consensus for radiologists to diagnose cancer in breast ultrasound(BUS)images.In DG-CNN,attention maps that highlight margin areas of tumors are first generated,and then incorporated via different approaches into the networks.We have tested the performance of DG-CNN on our own dataset(including 1485 ultrasound images)and on a public dataset.The results show that DG-CNN can be applied to different network structures like VGG and ResNet to improve their performance.For example,experimental results on our dataset show that with a certain integrating mode,the improvement of using DG-CNN over a baseline network structure ResNet 18 is 2.17%in accuracy,1.69%in sensitivity,2.64%in specificity and 2.57%in AUC(Area Under Curve).To the best of our knowledge,this is the first time that the margin information is utilized to improve the performance of deep neural networks in diagnosing breast cancer in BUS images.