Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of ant...Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.展开更多
The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resista...The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.展开更多
Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we use...Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke.展开更多
Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced conta...Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.展开更多
Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disinteg...Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disintegrin and metalloproteinase 10(ADAM10)is exploited to accelerate S.aureus infection through diverse mechanisms.The extraordinary contribution of ADAM10 to S.aureus pathogenesis renders it an attractive HDT target for combating S.aureus infection.Our study is the first to demonstrate the indispensable role of ADAM10 in S.aureus-induced necroptosis,and it enhances our knowledge of the role of ADAM10 in S.aureus infection.Using a fluorogenic substrate assay,we further identified kaempferol as a potent ADAM10 inhibitor that effectively protected mice from S.aureus infection by suppressing Hla-mediated barrier disruption and necroptosis.Collectively,our work presents a novel hostdirected therapeutic strategy for using the promising candidate kaempferol to treat S.aureus infection and other diseases relevant to the disordered upregulation of ADAM10.展开更多
Vascular scaffolds are one of the important application fields of biodegradable Mg alloys, and related research has been carried out for more than 20 years. In recent years, the application expansion of Mg alloy vascu...Vascular scaffolds are one of the important application fields of biodegradable Mg alloys, and related research has been carried out for more than 20 years. In recent years, the application expansion of Mg alloy vascular scaffolds has brought new challenges to the research of related fields. This review focuses on the relevant advances in the field of Mg alloys for both cardio-/cerebrovascular scaffolds. The frequently investigated alloy series for vascular scaffolds were reviewed. The bottleneck of processing of Mg alloy minitubes was elucidated.The idea of functionalized surface modification was also pointed out in this review, and the authors put forward guidelines based on research experience in terms of scaffold structural design and degradation behavior evaluation. Finally, suggestions for further research directions of Mg alloy vascular scaffolds were provided.展开更多
The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that...The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that Mg_(2)Ca corroded easier thanα-Mg,indicating that Mg_(2)Ca acted as an anode.The work function(Φ)for Mg_(2)Ca calculated by first-principles is significantly lower compared to that forα-Mg.The Volta potential measured by a scanning Kelvin probe force microscope reveals that the Mg_(2)Ca had a relatively low Volta potential(ψ)value.The lowerΦandψvalues for Mg_(2)Ca indicate a lower electrochemical nobility,which is consistent with the experimental phenomenon.展开更多
Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to descr...Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation.展开更多
Totally implantable access ports(TIAPs)are used for patients with poor peripheral vascular support requiring central venous access.In recent years,TIAPs have been gradually accepted and promoted by patients,doctors,an...Totally implantable access ports(TIAPs)are used for patients with poor peripheral vascular support requiring central venous access.In recent years,TIAPs have been gradually accepted and promoted by patients,doctors,and nurses owing to their advantages of convenient carrying,a long maintenance period,low complications,and a high quality of life for patients.Currently,medical personnel that handle TIAP implantation and management in China are from different areas of healthcare,including surgery,internal medicine,radiology,nurse anesthesia,vascular access,etc.,and many only handle TIAP as a part of their duties.Therefore,the operating procedures and steps for the diagnosis and treatment of complications of TIAP vary from person to person,resulting in different incidence and treatment methods for complications in the implantation and use of TIAP in different medical units.Based on this,we have updated the Shanghai expert consensus on TIAPs from 2015 and explored the diagnosis and treatment procedures of related complications while continuing to emphasize standardized implantation and maintenance.展开更多
Magnesium alloys have narrow available slip result from close-packed hexagonal structure that limit their processing properties.In the recent work,the Mg-2Zn-0.46Y-0.5Nd,as materials for degradable stents,was applied ...Magnesium alloys have narrow available slip result from close-packed hexagonal structure that limit their processing properties.In the recent work,the Mg-2Zn-0.46Y-0.5Nd,as materials for degradable stents,was applied to produce as-extruded micro-tube with an outer diameter of 3.0mm and a wall thickness of 0.35mm by hot extrusion with an extrusion ratio of 105:1 at 653K and rapid cooling.The fine microstructure of the dynamic recrystallization of as-extruded micro-tube could be preserved by rapid cooling such as water-cooled,resulting in more excellent mechanical properties relative to air-cooled micro-tube.The addition of rare earth elements Y and Nd results in continuous dynamic recrystallization dominated the dynamic recrystallization mechanism.During the hot extrusion process,the activation of the non-basal slip system,especially the pyramidal(c+a)slip,could significantly weaken the texture strength,and the as-extruded micro-tube exhibits weak"RE"texture components(011^(-)1)||ED and(1^(-)21^(-)1)||ED.Hence,the magnesium alloy micro-tube prepared by the rapid cooling has fine microstructure and weak texture,which is favorable for further process and governance.展开更多
Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductilit...Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.展开更多
Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loadin...Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loading in human body,magnesium alloys are easy to be affected by corrosion fatigue and stress corrosion cracking.In this work,the fatigue behavior of the extruded Mg-Zn-Y-Nd alloy used for vascular stents was studied both in air and in simulated body fluid(SBF).It was revealed that the fatigue limit of as-extruded Mg-Zn-Y-Nd alloy in air is about 65 MPa at 10^7 cycles,while there is no limit in SBF and shows a linear relationship between the fatigue life and stress amplitudes.The fatigue crack source in air was formed by the inclusions and defects.However,the stress corrosion and hydrogen embrittlement are the main reasons for the formation of the fatigue initial crack source in SBF.展开更多
To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divide...To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divided into four experimental groups: experimental group 1 (protein 15%, metabolic energy 9.95 MJ/kg), experimental group 2 (protein 16%, metabolic energy 10.95 MJ/kg), experimental group 3 (protein 17%, metabolic energy 12.65 MJ/kg) and experimental group 4 ( protein 18%, metabolic energy 13.95 MJ/kg), respectively. All chickens were slaughtered at 112-day old. The breast and leg muscles of Jinghai yellow chickens were collected, to determine the slaughter performance, conventional meat quality and muscle chemical indicators. The results indicated that dressing-out percentage and eviscerated yield percentage in four experimental groups were above 87.27% and 67.00%, respectively; other slaughter performance indicators exhibited no significant differences among various groups (P 〉 0.05 ) ; breast muscle color of hens in experimental group 4 varied significantly from that in other three groups ( P 〈 0.05 ) ; leg muscle color of hens in experimental group 2 varied extremely significantly from that in other three groups ( P 〈 0.01 ) ; water-holding capacity of breast muscles of hens in experimental group 3 was significantly higher than that in experimental group 4 (P 〈 0.05 ) ; thiamine content of breast muscles of cocks in experimental group 3 was significandy higher than that in experimental group 2 ( P 〈 0.05 ) ; however, other properties exhibited no significant differenees among various groups (P 〉 0.05 ).展开更多
Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is a...Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS.The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts.The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope.Moreover,external forcings,such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring,have certain influences on the strength of frontal upwelling.An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer;in contrast,an increase in air temperature in summer strengthens the frontal upwelling.When the southerly wind in summer increases,the upwelling intensifies in the western YS and weakens in the eastern YS.The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region.Furthermore,the meridional wind speed in summer affects frontal upwelling via Ekman pumping.展开更多
The protein adsorption has an immense influence on the biocompatibility of biodegradable Mg alloy.In this work,the effect of Zn content on the fibrinogen(Fg)adsorption behavior in Mg-Zn binary alloy was systematically...The protein adsorption has an immense influence on the biocompatibility of biodegradable Mg alloy.In this work,the effect of Zn content on the fibrinogen(Fg)adsorption behavior in Mg-Zn binary alloy was systematically investigated.Experimental results showed that the Fg adsorption amount increased at first and then decreased with the increase of Zn content.The adsorption mechanism was investigated by molecular dynamic and density functional theory simulations.The simulations results showed that Zn with low content existed in the inner layer of Mg alloys due to the lower system energy,which promoted Fg adsorption and the promotion effect was more obvious with the increase of Zn content.When Zn content increased to a higher concentration,parts of Zn atoms started to precipitate in the surface,and the Fg-surface interaction energy started to increase.Moreover,the Zn sites favored the formation of ordered water molecules layers,which inhibit the stable adsorptions of Fg.The inhibition effects of Fg adsorption was enhanced with the Zn content increase.In short,the simulation results explain the experimental phenomena and reveal the microscopic mechanism.This study would provide a significant guidance on the design of biodegradable Mg-Zn alloys.展开更多
An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dyna...An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).展开更多
Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimen...Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.展开更多
基金supported by the National Key Research and Development Program of China(2021YFD1801000)the Natural Science Foundation of China(32373066)+1 种基金the Natural Science Foundation of Jilin Province(20230101142JC)the Fundamental Research Funds for the Central Universities.
文摘Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.
基金grants from the Laboratory of Lingnan Modern Agriculture Project(NT2021006 to Yang Wang and Jianzhong Shen)the National Natural Science Foundation of China(81861138051 and 81991535 to Yang Wang and Congming Wu).
文摘The emergence and spread of the mobile colistin-resistance gene,mcr-1,and its variants pose achallenge to the use of colistin,a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant(XDR)Gram-negative pathogens.Antibiotic adjuvants are a promising strategy to enhance the efficacy of colistin against colistin-resistant pathogens;however,few studies have considered the effects of adjuvants on limiting resistance-gene transmission.We found that chelerythrine(4 mg·L^(-1))derived from Macleaya cordata extract,which is used as an animal feed additive,reduced the minimal inhibitory concentration(MIC)of colistin against an mcr-1 positive Escherichia coli(E.coli)strain by 16-fold(from 2.000 to 0.125 mg·L^(-1)).eliminated approximately 10^(4) colony-forming units(CFUs)of an mcr-1-carrying strain in a murine intestinal infection model,and inhibited the conjugation of an mcr-1-bearing plasmid in vitro(by>100-fold)and in a mouse model(by up to 5-fold).A detailed analysis revealed that chelery-thrine binds to phospholipids on bacterial membranes and increases cytoplasmic membrane fluidity,thereby impairing respiration,disrupting proton motive force(PMF),generating reactive oxygen species(ROS),and decreasing intracellular adenosine triphosphate(ATP)levels,which subsequently downregu-lates mcr-1 and conjugation-associated genes.These dual effects of chelerythrine can expand the use of antibiotic adjuvants and may provide a new strategy for circumventing mobile colistin resistance.
基金supported by the National Natural Science Foundation of China,Nos.81971870 and 82172173 (both to ML)。
文摘Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke.
基金This study was supported by General Research Fund from the Research Grants Council of the Hong Kong SAR(Grant Nos.CityU 11201020 and 11207321)the National Natural Science Foundation of China(Grant No.51779213)as well as Contract Research Project(Ref.No.CEDD STD-30-2030-1-12R)from the Geotechnical Engineering Office.
文摘Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.
基金supported by the National Natural Science Foundation of China(U22A20523,32172912,and 32102722)the Interdisciplinary Integration and Innovation Project of Jilin University(JLUXKJC2021QZ04)。
文摘Host-directed therapy(HDT)is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus(S.aureus)infection.Functioning as the indispensable specific cellular receptor for a-toxin(Hla),a-disintegrin and metalloproteinase 10(ADAM10)is exploited to accelerate S.aureus infection through diverse mechanisms.The extraordinary contribution of ADAM10 to S.aureus pathogenesis renders it an attractive HDT target for combating S.aureus infection.Our study is the first to demonstrate the indispensable role of ADAM10 in S.aureus-induced necroptosis,and it enhances our knowledge of the role of ADAM10 in S.aureus infection.Using a fluorogenic substrate assay,we further identified kaempferol as a potent ADAM10 inhibitor that effectively protected mice from S.aureus infection by suppressing Hla-mediated barrier disruption and necroptosis.Collectively,our work presents a novel hostdirected therapeutic strategy for using the promising candidate kaempferol to treat S.aureus infection and other diseases relevant to the disordered upregulation of ADAM10.
基金the financial support from the National Key Research and Development Program of China (2021YFC2400703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China (U1804251)。
文摘Vascular scaffolds are one of the important application fields of biodegradable Mg alloys, and related research has been carried out for more than 20 years. In recent years, the application expansion of Mg alloy vascular scaffolds has brought new challenges to the research of related fields. This review focuses on the relevant advances in the field of Mg alloys for both cardio-/cerebrovascular scaffolds. The frequently investigated alloy series for vascular scaffolds were reviewed. The bottleneck of processing of Mg alloy minitubes was elucidated.The idea of functionalized surface modification was also pointed out in this review, and the authors put forward guidelines based on research experience in terms of scaffold structural design and degradation behavior evaluation. Finally, suggestions for further research directions of Mg alloy vascular scaffolds were provided.
基金funded by the National Key Research and Development Program of China(No.2017YFB0702504)
文摘The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that Mg_(2)Ca corroded easier thanα-Mg,indicating that Mg_(2)Ca acted as an anode.The work function(Φ)for Mg_(2)Ca calculated by first-principles is significantly lower compared to that forα-Mg.The Volta potential measured by a scanning Kelvin probe force microscope reveals that the Mg_(2)Ca had a relatively low Volta potential(ψ)value.The lowerΦandψvalues for Mg_(2)Ca indicate a lower electrochemical nobility,which is consistent with the experimental phenomenon.
基金supported by the General Research Fund from the Research Grant Council of the Hong Kong SAR,China(Grant Nos.CityU 11201020 and CityU 11207321)the National Science Foundation of China(Grant No.42207185)+1 种基金the Contract Research Project from the Geotechnical Engineering Office of the Civil Engineering Development Department of Hong Kong SAR,China(Project Ref.No.CEDD STD-30-2030-1-12R)the BL13W beamline of Shanghai Synchrotron Radiation Facility(SSRF)。
文摘Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation.
文摘Totally implantable access ports(TIAPs)are used for patients with poor peripheral vascular support requiring central venous access.In recent years,TIAPs have been gradually accepted and promoted by patients,doctors,and nurses owing to their advantages of convenient carrying,a long maintenance period,low complications,and a high quality of life for patients.Currently,medical personnel that handle TIAP implantation and management in China are from different areas of healthcare,including surgery,internal medicine,radiology,nurse anesthesia,vascular access,etc.,and many only handle TIAP as a part of their duties.Therefore,the operating procedures and steps for the diagnosis and treatment of complications of TIAP vary from person to person,resulting in different incidence and treatment methods for complications in the implantation and use of TIAP in different medical units.Based on this,we have updated the Shanghai expert consensus on TIAPs from 2015 and explored the diagnosis and treatment procedures of related complications while continuing to emphasize standardized implantation and maintenance.
基金The authors are grateful for the financial support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)the National Key Research and Development Program of China(2018YFC1106703,2017YFB0702504 and 2016YFC1102403).
文摘Magnesium alloys have narrow available slip result from close-packed hexagonal structure that limit their processing properties.In the recent work,the Mg-2Zn-0.46Y-0.5Nd,as materials for degradable stents,was applied to produce as-extruded micro-tube with an outer diameter of 3.0mm and a wall thickness of 0.35mm by hot extrusion with an extrusion ratio of 105:1 at 653K and rapid cooling.The fine microstructure of the dynamic recrystallization of as-extruded micro-tube could be preserved by rapid cooling such as water-cooled,resulting in more excellent mechanical properties relative to air-cooled micro-tube.The addition of rare earth elements Y and Nd results in continuous dynamic recrystallization dominated the dynamic recrystallization mechanism.During the hot extrusion process,the activation of the non-basal slip system,especially the pyramidal(c+a)slip,could significantly weaken the texture strength,and the as-extruded micro-tube exhibits weak"RE"texture components(011^(-)1)||ED and(1^(-)21^(-)1)||ED.Hence,the magnesium alloy micro-tube prepared by the rapid cooling has fine microstructure and weak texture,which is favorable for further process and governance.
基金support from the National Natural Science Foundation of China(51973054)Young Talents Program in Hunan Province(2020RC3024)+2 种基金Natural Science Funds of Hunan Province for Distinguished Young Scholar(2021JJ10018)Science Research Project of Hunan Provincial Education Department(21B0027)High-level Innovative Talent Project in Hunan Province(2018RS3055).
文摘Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
基金The authors are grateful for the financial support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(No.U1804251)the National Key Research and Development Program of China(No.2018YFC1106703,2017YFB0702504 and 2016YFC1102403).
文摘Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loading in human body,magnesium alloys are easy to be affected by corrosion fatigue and stress corrosion cracking.In this work,the fatigue behavior of the extruded Mg-Zn-Y-Nd alloy used for vascular stents was studied both in air and in simulated body fluid(SBF).It was revealed that the fatigue limit of as-extruded Mg-Zn-Y-Nd alloy in air is about 65 MPa at 10^7 cycles,while there is no limit in SBF and shows a linear relationship between the fatigue life and stress amplitudes.The fatigue crack source in air was formed by the inclusions and defects.However,the stress corrosion and hydrogen embrittlement are the main reasons for the formation of the fatigue initial crack source in SBF.
基金Supported by Special Fund for National Broiler Industry Technology System ofChina(CARS-42-G23)Project of Priority Academic Program Development ofJiangsu Higher Education Institutionsthe New Century Talent Project of Yangzhou University
文摘To investigate the effect of different dietary energy and protein levels on meat performance and meat quality of Jinghai yellow chickens, 480 43-day old Jinghai yellow chickens with similar weight were randomly divided into four experimental groups: experimental group 1 (protein 15%, metabolic energy 9.95 MJ/kg), experimental group 2 (protein 16%, metabolic energy 10.95 MJ/kg), experimental group 3 (protein 17%, metabolic energy 12.65 MJ/kg) and experimental group 4 ( protein 18%, metabolic energy 13.95 MJ/kg), respectively. All chickens were slaughtered at 112-day old. The breast and leg muscles of Jinghai yellow chickens were collected, to determine the slaughter performance, conventional meat quality and muscle chemical indicators. The results indicated that dressing-out percentage and eviscerated yield percentage in four experimental groups were above 87.27% and 67.00%, respectively; other slaughter performance indicators exhibited no significant differences among various groups (P 〉 0.05 ) ; breast muscle color of hens in experimental group 4 varied significantly from that in other three groups ( P 〈 0.05 ) ; leg muscle color of hens in experimental group 2 varied extremely significantly from that in other three groups ( P 〈 0.01 ) ; water-holding capacity of breast muscles of hens in experimental group 3 was significantly higher than that in experimental group 4 (P 〈 0.05 ) ; thiamine content of breast muscles of cocks in experimental group 3 was significandy higher than that in experimental group 2 ( P 〈 0.05 ) ; however, other properties exhibited no significant differenees among various groups (P 〉 0.05 ).
基金The National Key Research and Development Project under contract No.2017YFC1403400the National Key Research and Development Program of China under contract No.2016YFC1402501+2 种基金the National Natural Science Foundation of China under contract No.41806164the Open Fund Project of Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resourcesthe Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401.
文摘Frontal upwelling is an important phenomenon in summer in the Yellow Sea(YS)and plays an essential role in the distribution of nutrients and biological species.In this paper,a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS.The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts.The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope.Moreover,external forcings,such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring,have certain influences on the strength of frontal upwelling.An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer;in contrast,an increase in air temperature in summer strengthens the frontal upwelling.When the southerly wind in summer increases,the upwelling intensifies in the western YS and weakens in the eastern YS.The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region.Furthermore,the meridional wind speed in summer affects frontal upwelling via Ekman pumping.
基金financially supported by the National Natural Science Foundation of China(No.U1804251)the National Key Research and Development Program of China(Nos.2017YFB0702500 and 2018YFC1106703)
文摘The protein adsorption has an immense influence on the biocompatibility of biodegradable Mg alloy.In this work,the effect of Zn content on the fibrinogen(Fg)adsorption behavior in Mg-Zn binary alloy was systematically investigated.Experimental results showed that the Fg adsorption amount increased at first and then decreased with the increase of Zn content.The adsorption mechanism was investigated by molecular dynamic and density functional theory simulations.The simulations results showed that Zn with low content existed in the inner layer of Mg alloys due to the lower system energy,which promoted Fg adsorption and the promotion effect was more obvious with the increase of Zn content.When Zn content increased to a higher concentration,parts of Zn atoms started to precipitate in the surface,and the Fg-surface interaction energy started to increase.Moreover,the Zn sites favored the formation of ordered water molecules layers,which inhibit the stable adsorptions of Fg.The inhibition effects of Fg adsorption was enhanced with the Zn content increase.In short,the simulation results explain the experimental phenomena and reveal the microscopic mechanism.This study would provide a significant guidance on the design of biodegradable Mg-Zn alloys.
基金Botnia-Atlantica, an EU-programme financing cross border cooperation projects in Sweden, Finland and Norway, for their support of this work through the WindCoE project
文摘An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61734008)the National Natural Science Foundation of China(Grant No.62174173)。
文摘Ⅲ-nitride semiconductor materials have excellent optoelectronic properties,mechanical properties,and chemical stability,which have important applications in the field of optoelectronics and microelectronics.Two-dimensional(2D)materials have been widely focused in recent years due to their peculiar properties.With the property of weak bonding between layers of 2D materials,the growth ofⅢ-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality,low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices.In this progress report,the main methods for the preparation of 2D materials,and the recent progress and applications of different techniques for the growth ofⅢ-nitrides based on 2D materials are reviewed.