Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate...Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.展开更多
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu...Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.展开更多
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi...Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.展开更多
Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their a...Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode.展开更多
Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficu...Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs.展开更多
An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device...An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.展开更多
Recently,more and more supercapacitors(SCs)have been developed as AC line filter capacitors,which are generally named AC line filter electrochemical capacitors(FECs).Compared to traditional bulky aluminum electrolytic...Recently,more and more supercapacitors(SCs)have been developed as AC line filter capacitors,which are generally named AC line filter electrochemical capacitors(FECs).Compared to traditional bulky aluminum electrolytic capacitors(AECs),FECs have higher capacity and lower space occupancy,which makes them a strong competitor.However,different from the common SCs for energy storage,it is necessary to consider the frequency response of the SCs for AC line filtering,where the contradiction between frequency response and specific capacitance is a challenge.The researchers have proposed different solutions from the perspective of materials,morphology,and configuration for this challenge.Based on the above background,in this review,we briefly introduce the principle and parameters of AC line filter electrochemical capacitors.We systematically summarize the state-of-the-art progresses of FECs and discuss their possible application and development in the future.The development of FECs can greatly promote the planarization,integration,and miniaturization of filter capacitors,and provide a new solution for the utilization of green and unstable energy.展开更多
Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu...Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.展开更多
To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effect...To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effective strategy.Exploring waste materials is highly important especially for new materials discovery in emerging energy storage technologies such as lithium sulfur batteries(LSBs).Herein,waste milk powder is carbonized and constructed as the sulfur host with the hollow micro-/mesoporous framework,and the resulting carbonized milk powder and sulfur(CMP/S) composites are employed as cathodes for LSBs.It is revealed that the hollow micro-/mesoporous CMP/S framework can not only accommodate the volume expansion but also endow smooth pathways for the fast diffusion of electrons and Li-ions,leading to both high capacity and long cycling stability.The CMP/S composite electrode with 56 wt% loaded sulfur exhibits a remarkable initial capacity of 1596 mAh g^(-1) at 0.1 C,corresponding to 95% of the theoretical capacity.Even at a rate of 1 C,it maintains a high capacity of 730 mAh g^(-1) with a capacity retention of 72.6% after 500 cycles,demonstrating a very low capacity fading of only 0.05% per cycle.Importantly,the Coulombic efficiency is always higher than 96%during all the cycles.The only used source material is expired waste milk powders in our proposal.We believe that this "trash to treasure" approach will open up a new way for the utilization of waste material as environmentally safe and high performance electrodes for advanced LSBs.展开更多
We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as...We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as well as a high visible transmittance above 87%with a wide bandgap of 3.12 eV.Using a-ZnRhCuO films as active layers,thin-film transistors(TFTs)and gas sensors are fabricated.The TFT behaviors demonstrate the p-type nature of a-ZnRhCuO channel,with an on-to-off current ratio of^1×10^3 and field-effect mobility of0.079 cm^2 V^-1s^-1.The behaviors of gas sensors also prove that the a-ZnRhCuO films are of p-type conductivity.Our achievements relating to p-type a-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.展开更多
Background and aims:Splenomegaly often occurs in cirrhotic patients with portal hypertension(PHT),and therefore,the efficacy and accuracy of conventional methods for measuring splenic volume are a matter of question i...Background and aims:Splenomegaly often occurs in cirrhotic patients with portal hypertension(PHT),and therefore,the efficacy and accuracy of conventional methods for measuring splenic volume are a matter of question in these patients.Here,we developed a novel approach to assess true splenic volume more precisely.Methods:High-quality thin-slice computed tomography data of 112 cirrhotic patients with PHT were obtained and reviewed.Both the conventional measurement and a novel formula obtained from 3-dimensional reconstruction software were used to estimate splenic volume,and the accuracy was compared and verified.Results:In PHT patients,the splenic volume calculated using the conventional method was significantly less than that calculated using the 3-dimensional software.We found that the splenic volume was significantly positively correlated with splenic indices of length(L),thickness(T),and width(W)and also the diameter of the splenic vein.Using these indices,we propose 2 novel formulas using the software to estimate the splenic volume more accurately:SV=69.686 L+53.077 W+103.525 T+314.510 diameter of splenic vein 2266.209(p<0.01,R^(2)=0.805).And a more practical simplified formula:SV'=0.504× L× W×T+319.762 diameter of splenic vein 81.66(p<0.01,R^(2)=0.784).Conclusion:Although the conventional formula has been widely used for years,it is not suitable for an enlarged spleen.We developed 2 novel formulas for estimating splenic volume from clinical data that were more appropriate for cirrhotic patients with PHT.展开更多
The development of highly efficient catalysts in the cathodes of rechargeable Li-O_(2) batteries is a considerable challenge.To enhance the electrochemical performance of the Li-O_(2) battery,it is essential to choose...The development of highly efficient catalysts in the cathodes of rechargeable Li-O_(2) batteries is a considerable challenge.To enhance the electrochemical performance of the Li-O_(2) battery,it is essential to choose a suitable catalyst material.Copper selenide(CuSe)is considered as a more promising cathode catalyst material for Li-O_(2) battery due to its better conductivity and rich electrochemical active sites.However,its electrochemical reaction and fundamental catalytic mechanism remain unclear till now.Herein,in-situ environmental transmission electron microscopy technique was used to study the catalysis mechanism of the CuSe nanosheets in Li-O_(2) batteries during discharge and charge processes.It is found that Li_(2)O was formed and decomposed around the ultrafine-grained Cu during the discharge and charge processes,respectively,demonstrating excellent cycling.This indicate that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter four-electron-transfer oxygen reduction reaction,leading to the formation of Li_(2)O.Our study provides important understanding of the electrochemistry of the LiO_(2) nanobatteries,which will aid the development of high-performance Li-O_(2) batteries for energy storage applications.展开更多
Iron fluoride(FeF_(3)) is considered as a promising cathode material for Li-ion batteries(LIBs)due to its high theoretical capacity(712 mAh/g)with a 3 e-transfer.Herein,we have designed a strategy of hierarchical and ...Iron fluoride(FeF_(3)) is considered as a promising cathode material for Li-ion batteries(LIBs)due to its high theoretical capacity(712 mAh/g)with a 3 e-transfer.Herein,we have designed a strategy of hierarchical and mesoporous FeF_(3)/rG O hybrids for LIBs,where the hollow Fe F_(3) nanospheres are the main contributor to the specific capacity and the 2 D r GO nanosheets are the matrix elevating the electronic conductivity and buffering the volume expansion.The unique FeF_(3)/rGO hybrid can be rationally synthesized by a nonaqueous in-situ precipitation method,offering the merits of large specific surface area with rich active sites,fast transport channels for lithium ions,effective alleviation of volume expansion during cycles,and accelerating the electrochemical reaction kinetics.The Fe F_(3)/r GO hybrid electrode possesses a high initial discharge capacity of 553.9 m Ah/g at a rate of 0.5 C with 378 m Ah/g after 100 cycles,acceptable rate capability with 168 m Ah/g at 2 C,and feasible high-temperature operation(320 m Ah/g at 70℃).The superior electrochemical behaviors presented here demonstrates that the FeF_(3)/rGO hybrid is a potential electrode for LIBs,which may open up a new vision to design high-efficiency energy-storage devices such as LIBs based on transition metal fluorides.展开更多
Exploring 3 D hybrid nanocarbons encapsulated with metal nanoparticles(NPs)are recently considered as emerging catalysts for boosting CO2 electroreduction reaction(CRR)under practical and economic limits.Herein,we rep...Exploring 3 D hybrid nanocarbons encapsulated with metal nanoparticles(NPs)are recently considered as emerging catalysts for boosting CO2 electroreduction reaction(CRR)under practical and economic limits.Herein,we report a one-step pyrolysis strategy for fabricating N-doped carbon nanotube(CNT)-encapsulated Ni NPs assembled on the surface of graphene(N/NiNPs@CNT/G)to efficiently convert CO2 into CO.In such 3 D hybrid,the particle size of Ni NPs that coated by five graphitic carbon layers is less than 100 nm,and the amount of N dopants introduced into graphene with countable CNTs is determined to 7.27 at%.Thanks to unique CNT-encapsulated Ni NPs structure and N dopants,the achieved N/NiNPs@CNT/G hybrid displays an exceptional CRR activity with a high Faradaic efficiency of 97.7%and large CO partial current density of 7.9 mA/cm2 at-0.7 V,which outperforms those reported metallic NPs loaded carbon based CRR electrocatalysts.Further,a low Tafel slope of 134 mV/dec,a turnover frequency of 387.3 CO/h at-0.9 V,and tiny performance losses during long-term CRR operation are observed on N/NiNPs@CNT/G.Experimental observations illustrate that the Ni NPs encapsulated by carbon layers along with N dopants are of great importance in the conversion of CO2 into CO with high current density.展开更多
Weibo is the Twitter counterpart in China that has attracted hundreds of millions of users. We crawled an almost complete Weibo user network that contains 222 million users and 27 billion links in 2013. This paper ana...Weibo is the Twitter counterpart in China that has attracted hundreds of millions of users. We crawled an almost complete Weibo user network that contains 222 million users and 27 billion links in 2013. This paper analyzes the structural properties of this network, and compares it with a Twitter user network. The topological properties we studied include the degree distributions, connected components, distance distributions, reciprocity,clustering coefficient, Page Rank centrality, and degree assortativity. We find that Weibo users have a higher diversity index, higher Gini index, but a lower reciprocity and clustering coefficient for most of the nodes. A surprising observation is that the reciprocity of Weibo is only about a quarter of the reciprocity of the Twitter user network. We also show that Weibo adoption rate correlates with economic development positively, and Weibo network can be used to quantify the connections between provinces and regions in China. In particular, point-wise mutual information is shown to be accurate in quantifying the strength of connections. We developed an interactive analyzing software framework for this study, and released the data and code online.展开更多
Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering f...Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering for the GZO layers. In this work, we investigated the electrical and optical characteristics of GZO/Cu grid/GZO multilayer electrode for thin film solar cells by using evaporated Cu grid and sputtered GZO thin films to enhance the optical transparency without significantly affecting their conductivity. The optical transmittance and sheet resistance of GZO/Cu grid/GZO multilayer are higher than those of GZO/Cu film/GZO multilayer independent of Cu grid separation distance and increase with increasing Cu grid separation distances. The calculation of both transmittance and sheet resistance of GZO/Cu grid] GZO multilayer was based on Cu filling factor correlated with the geometry of Cu grid. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid/GZO multilayer were similar to the experimentally observed ones. The highest figure of merit ФTc is 5.18× 10^-3Ω^-1 for the GZO/Cu grid] GZO multilayer with Cu grid separation distance of 1 mm was obtained, in this case, the transmittance and resistivity were 82.72% and 2.17 × 10 ^-4Ωcm, respectively. The transmittance and resistivity are accentahle for nractical thin film snlar cell annlicatinn~展开更多
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last d...The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade.As a powerful tool to decipher genome data at the molecular biology level,genome editing technology has made important contributions to elucidating many biological problems.Currently,the three most widely used genome editing technologies include:zinc finger nucleases(ZFN),transcription activator like effector nucleases(TALEN),and clustered regularly interspaced short palindromic repeats(CRISPR).Researchers are still striving to create simpler,more efficient,and accurate techniques,such as engineered base editors and new CRISPR/Cas systems,to improve editing efficiency and reduce off-target rate,as well as a near-PAMless SpCas9 variants to expand the scope of genome editing.As one of the important animal protein sources,fish has significant economic value in aquaculture.In addition,fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates.Consequently,genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture.In this review,we focus on the application of genome editing technologies in fish species detailing growth,gender,and pigmentation traits.In addition,we have focused on the construction of a zebrafish(Danio rerio)disease model and high-throughput screening of functional genes.Finally,we provide some of the future perspectives of this technology.展开更多
基金supported by the Scientific Innovation Group for Youths of Sichuan Province under Grant No.2019JDTD0017。
文摘Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils.
基金Natural Science Foundation of Hebei Province,Grant/Award Number:F2021203097China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702756,2023T160551National Natural Science Foundation of China,Grant/Award Numbers:51971245,52022088。
文摘Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.
基金the Science and Technology program of Gansu Province(Grant No.23ZDFA017)the National Natural Science Foundation of China(Grant Nos.U21A2012,42101136)the Program for Top Leading Talents of Gansu Province(Granted to Dr.MingYi Zhang).
文摘Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.
基金financial support from the National Natural Science Foundation of China(21878270,21878267,21922811,21978258 and 21961160742)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)the Fundamental Research Funds for the Central Universities(2020XZZX002-09)the Startup Foundation for Hundred-Talent Program of Zhejiang Universitythe Zhejiang Key Laboratory of Marine Materials and Protective Technologies(2020K10)。
文摘Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode.
基金supported by National Natural Science Foundation of China(No.U20A20209)Zhejiang Provincial Natural Science Foundation of China(LD19E020001)+1 种基金Zhejiang Provincial Key Research and Development Program(2021C01030)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(2021C01SA301612)。
文摘Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs.
基金the support of National Natural Science Foundation of China (Nos. 51702284 and 21878270)Zhejiang Provincial Natural Science Foundation of China (LR19B060002)+5 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang University(112100-193820101/001/022)the support of Shenzhen Science and Technology Project of China (JCYJ20170412105400428)the support of Zhejiang Provincial Natural Science Foundation of China (LR16F040001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Universitythe support of Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang Province
文摘An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
基金financially supported by the National Natural Science Foundation of China(U20A20209)Zhejiang Provincial Key Research and Development Program(2021C01030)+7 种基金Zhejiang Provincial Natural Science Foundation of China(LD19E020001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education,Zhejiang UniversityNational Key R@D Program of China(2016YFB0100100)National Natural Science Foundation of China(51872283,22075279,21805273)Liaoning Revitalization Talents Program(XLYC1807153)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912 and DNL201915)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP I2020032).
文摘Recently,more and more supercapacitors(SCs)have been developed as AC line filter capacitors,which are generally named AC line filter electrochemical capacitors(FECs).Compared to traditional bulky aluminum electrolytic capacitors(AECs),FECs have higher capacity and lower space occupancy,which makes them a strong competitor.However,different from the common SCs for energy storage,it is necessary to consider the frequency response of the SCs for AC line filtering,where the contradiction between frequency response and specific capacitance is a challenge.The researchers have proposed different solutions from the perspective of materials,morphology,and configuration for this challenge.Based on the above background,in this review,we briefly introduce the principle and parameters of AC line filter electrochemical capacitors.We systematically summarize the state-of-the-art progresses of FECs and discuss their possible application and development in the future.The development of FECs can greatly promote the planarization,integration,and miniaturization of filter capacitors,and provide a new solution for the utilization of green and unstable energy.
基金supported by the Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University(No.K19-534202-002)the National Natural Science Foundation of China(No.21978261)the Zhejiang Provincial Key Research and Development Program of China(No.2021C01030).
文摘Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.
基金supported by Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang ProvinceShenzhen Science and Technology Project (JCYJ20170412105400428)。
文摘To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effective strategy.Exploring waste materials is highly important especially for new materials discovery in emerging energy storage technologies such as lithium sulfur batteries(LSBs).Herein,waste milk powder is carbonized and constructed as the sulfur host with the hollow micro-/mesoporous framework,and the resulting carbonized milk powder and sulfur(CMP/S) composites are employed as cathodes for LSBs.It is revealed that the hollow micro-/mesoporous CMP/S framework can not only accommodate the volume expansion but also endow smooth pathways for the fast diffusion of electrons and Li-ions,leading to both high capacity and long cycling stability.The CMP/S composite electrode with 56 wt% loaded sulfur exhibits a remarkable initial capacity of 1596 mAh g^(-1) at 0.1 C,corresponding to 95% of the theoretical capacity.Even at a rate of 1 C,it maintains a high capacity of 730 mAh g^(-1) with a capacity retention of 72.6% after 500 cycles,demonstrating a very low capacity fading of only 0.05% per cycle.Importantly,the Coulombic efficiency is always higher than 96%during all the cycles.The only used source material is expired waste milk powders in our proposal.We believe that this "trash to treasure" approach will open up a new way for the utilization of waste material as environmentally safe and high performance electrodes for advanced LSBs.
基金Supported by the National Natural Science Foundation of China(Grant No.51741209)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LR16F040001 and LGG19F040005)。
文摘We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as well as a high visible transmittance above 87%with a wide bandgap of 3.12 eV.Using a-ZnRhCuO films as active layers,thin-film transistors(TFTs)and gas sensors are fabricated.The TFT behaviors demonstrate the p-type nature of a-ZnRhCuO channel,with an on-to-off current ratio of^1×10^3 and field-effect mobility of0.079 cm^2 V^-1s^-1.The behaviors of gas sensors also prove that the a-ZnRhCuO films are of p-type conductivity.Our achievements relating to p-type a-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.
基金by the Ethical Committee of Tangdu Hos-pital(approval number:K202001-07).
文摘Background and aims:Splenomegaly often occurs in cirrhotic patients with portal hypertension(PHT),and therefore,the efficacy and accuracy of conventional methods for measuring splenic volume are a matter of question in these patients.Here,we developed a novel approach to assess true splenic volume more precisely.Methods:High-quality thin-slice computed tomography data of 112 cirrhotic patients with PHT were obtained and reviewed.Both the conventional measurement and a novel formula obtained from 3-dimensional reconstruction software were used to estimate splenic volume,and the accuracy was compared and verified.Results:In PHT patients,the splenic volume calculated using the conventional method was significantly less than that calculated using the 3-dimensional software.We found that the splenic volume was significantly positively correlated with splenic indices of length(L),thickness(T),and width(W)and also the diameter of the splenic vein.Using these indices,we propose 2 novel formulas using the software to estimate the splenic volume more accurately:SV=69.686 L+53.077 W+103.525 T+314.510 diameter of splenic vein 2266.209(p<0.01,R^(2)=0.805).And a more practical simplified formula:SV'=0.504× L× W×T+319.762 diameter of splenic vein 81.66(p<0.01,R^(2)=0.784).Conclusion:Although the conventional formula has been widely used for years,it is not suitable for an enlarged spleen.We developed 2 novel formulas for estimating splenic volume from clinical data that were more appropriate for cirrhotic patients with PHT.
基金financially supported by the National Natural Science Foundation of China(Nos.52022088,51971245)Natural Science Foundation of Hebei Province(No.F2021203097)China Postdoctoral Science Foundation(No.2021M702756)。
文摘The development of highly efficient catalysts in the cathodes of rechargeable Li-O_(2) batteries is a considerable challenge.To enhance the electrochemical performance of the Li-O_(2) battery,it is essential to choose a suitable catalyst material.Copper selenide(CuSe)is considered as a more promising cathode catalyst material for Li-O_(2) battery due to its better conductivity and rich electrochemical active sites.However,its electrochemical reaction and fundamental catalytic mechanism remain unclear till now.Herein,in-situ environmental transmission electron microscopy technique was used to study the catalysis mechanism of the CuSe nanosheets in Li-O_(2) batteries during discharge and charge processes.It is found that Li_(2)O was formed and decomposed around the ultrafine-grained Cu during the discharge and charge processes,respectively,demonstrating excellent cycling.This indicate that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter four-electron-transfer oxygen reduction reaction,leading to the formation of Li_(2)O.Our study provides important understanding of the electrochemistry of the LiO_(2) nanobatteries,which will aid the development of high-performance Li-O_(2) batteries for energy storage applications.
基金financially supported by National Natural Science Foundation of China(No.U20A20209)Zhejiang Provincial Key Research and Development Program(No.2021C01030)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LD19E020001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education,Zhejiang University。
文摘Iron fluoride(FeF_(3)) is considered as a promising cathode material for Li-ion batteries(LIBs)due to its high theoretical capacity(712 mAh/g)with a 3 e-transfer.Herein,we have designed a strategy of hierarchical and mesoporous FeF_(3)/rG O hybrids for LIBs,where the hollow Fe F_(3) nanospheres are the main contributor to the specific capacity and the 2 D r GO nanosheets are the matrix elevating the electronic conductivity and buffering the volume expansion.The unique FeF_(3)/rGO hybrid can be rationally synthesized by a nonaqueous in-situ precipitation method,offering the merits of large specific surface area with rich active sites,fast transport channels for lithium ions,effective alleviation of volume expansion during cycles,and accelerating the electrochemical reaction kinetics.The Fe F_(3)/r GO hybrid electrode possesses a high initial discharge capacity of 553.9 m Ah/g at a rate of 0.5 C with 378 m Ah/g after 100 cycles,acceptable rate capability with 168 m Ah/g at 2 C,and feasible high-temperature operation(320 m Ah/g at 70℃).The superior electrochemical behaviors presented here demonstrates that the FeF_(3)/rGO hybrid is a potential electrode for LIBs,which may open up a new vision to design high-efficiency energy-storage devices such as LIBs based on transition metal fluorides.
基金support of the National Natural Science of Fundation of China(Nos.51702284,21878271,21878270 and21961160742)Natural Science Foundation of Zhejiang Province(No.LR19B060002)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Startup Foundation for HundredTalent Program of Zhejiang University。
文摘Exploring 3 D hybrid nanocarbons encapsulated with metal nanoparticles(NPs)are recently considered as emerging catalysts for boosting CO2 electroreduction reaction(CRR)under practical and economic limits.Herein,we report a one-step pyrolysis strategy for fabricating N-doped carbon nanotube(CNT)-encapsulated Ni NPs assembled on the surface of graphene(N/NiNPs@CNT/G)to efficiently convert CO2 into CO.In such 3 D hybrid,the particle size of Ni NPs that coated by five graphitic carbon layers is less than 100 nm,and the amount of N dopants introduced into graphene with countable CNTs is determined to 7.27 at%.Thanks to unique CNT-encapsulated Ni NPs structure and N dopants,the achieved N/NiNPs@CNT/G hybrid displays an exceptional CRR activity with a high Faradaic efficiency of 97.7%and large CO partial current density of 7.9 mA/cm2 at-0.7 V,which outperforms those reported metallic NPs loaded carbon based CRR electrocatalysts.Further,a low Tafel slope of 134 mV/dec,a turnover frequency of 387.3 CO/h at-0.9 V,and tiny performance losses during long-term CRR operation are observed on N/NiNPs@CNT/G.Experimental observations illustrate that the Ni NPs encapsulated by carbon layers along with N dopants are of great importance in the conversion of CO2 into CO with high current density.
基金supported by NSERC(Natural Sciences and Engineering Research Council of Canada)Discovery grant(No.RGPIN-2014-04463)the National High-Tech Research and Development(863)Program of China(No.2012AA010903)the National Natural Science Foundation of China(Nos.61433008 and U1435216)
文摘Weibo is the Twitter counterpart in China that has attracted hundreds of millions of users. We crawled an almost complete Weibo user network that contains 222 million users and 27 billion links in 2013. This paper analyzes the structural properties of this network, and compares it with a Twitter user network. The topological properties we studied include the degree distributions, connected components, distance distributions, reciprocity,clustering coefficient, Page Rank centrality, and degree assortativity. We find that Weibo users have a higher diversity index, higher Gini index, but a lower reciprocity and clustering coefficient for most of the nodes. A surprising observation is that the reciprocity of Weibo is only about a quarter of the reciprocity of the Twitter user network. We also show that Weibo adoption rate correlates with economic development positively, and Weibo network can be used to quantify the connections between provinces and regions in China. In particular, point-wise mutual information is shown to be accurate in quantifying the strength of connections. We developed an interactive analyzing software framework for this study, and released the data and code online.
基金support of the key project of the National Natural Science Foundation of China under Grant Nos.91333203 and 51172204the Program for Innovative Research Team in University of Ministry of Education of China under Grant No.IRT13037the Zhejiang Provincial Department of Science and Technology of China under Grant No.2010R50020
文摘Ga doped ZnO (OZO)/Cu grid/GZO transparent conductive electrode (TCE) structures were fabricated at room temperature (RT) by using electron beam evaporation (EBE) for the Cu grids and RF magnetron sputtering for the GZO layers. In this work, we investigated the electrical and optical characteristics of GZO/Cu grid/GZO multilayer electrode for thin film solar cells by using evaporated Cu grid and sputtered GZO thin films to enhance the optical transparency without significantly affecting their conductivity. The optical transmittance and sheet resistance of GZO/Cu grid/GZO multilayer are higher than those of GZO/Cu film/GZO multilayer independent of Cu grid separation distance and increase with increasing Cu grid separation distances. The calculation of both transmittance and sheet resistance of GZO/Cu grid] GZO multilayer was based on Cu filling factor correlated with the geometry of Cu grid. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid/GZO multilayer were similar to the experimentally observed ones. The highest figure of merit ФTc is 5.18× 10^-3Ω^-1 for the GZO/Cu grid] GZO multilayer with Cu grid separation distance of 1 mm was obtained, in this case, the transmittance and resistivity were 82.72% and 2.17 × 10 ^-4Ωcm, respectively. The transmittance and resistivity are accentahle for nractical thin film snlar cell annlicatinn~
基金This work was supported by Guangzhou Science and Technology Project[No.201803020017]National Natural Science Foundation of China[No.31902427]China Postdoctoral Science Foundation[No.2018M631016].
文摘The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade.As a powerful tool to decipher genome data at the molecular biology level,genome editing technology has made important contributions to elucidating many biological problems.Currently,the three most widely used genome editing technologies include:zinc finger nucleases(ZFN),transcription activator like effector nucleases(TALEN),and clustered regularly interspaced short palindromic repeats(CRISPR).Researchers are still striving to create simpler,more efficient,and accurate techniques,such as engineered base editors and new CRISPR/Cas systems,to improve editing efficiency and reduce off-target rate,as well as a near-PAMless SpCas9 variants to expand the scope of genome editing.As one of the important animal protein sources,fish has significant economic value in aquaculture.In addition,fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates.Consequently,genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture.In this review,we focus on the application of genome editing technologies in fish species detailing growth,gender,and pigmentation traits.In addition,we have focused on the construction of a zebrafish(Danio rerio)disease model and high-throughput screening of functional genes.Finally,we provide some of the future perspectives of this technology.